Series 200

I/O System Units

7The Series 200 I/O System features a number of interface units for various process applications. The I/O units are compatible with the I/O 200C units and can be mixed with them in any order on the same DIN rail.

The units in the I/O system are intended for use in industrial environment and they fulfil the EMC directive 89/336/EEC. The I/O units may be mounted centrally at the Central System or remotely.

The inputs and outputs are filtered and galvanically isolated by optocouplers.

Configuration of the I/O units' functions and measuring ranges is performed using the system software.
The units of Series 200 are used by SattCon 200 and SattLine to varying extents, and in various combinations.

The Series 200 I/O System features:

- Replacement under system power
- CE and UL approvement
- Software configurable function
- Mechanical coding for safe replacement
- Safety function on outputs in remote configuration
- Variety of termination options
- The same I/O units in central and remote configurations
- Compatible with I/O 200C

I/O Units

The in/outputs are filtered and galvanically isolated by optocouplers. LEDs are located on the front.
It is possible under system power to remove/insert the units. The process is connected to the units via the terminal base. Power for the internal logic is provided on the serial bus via the adapter for the I/O system.
The use of I/O units and their functionality with SattCon 200 and SattLine systems is dependent on certain system versions and configurations. Please refer to the relevant manuals or data sheets.

200-IB16

I/O unit for 16 digital input signals. The status of each input signal is indicated by a yellow LED.
Each signal is isolated from the logic circuits by an optocoupler and filtered with a low-pass filter. The inputs share a common ground connection.
The input signals are sampled at intervals determined by a filter time. The signal status is changed only if two consecutive samples are the same. The filter time is set with the programming software.
200-IB16 contains a counter.

200-OB16, 200-OB16P

I/O units for 16 digital output signals. The outputs of 200-OB16P are shortcircuit proof. Up to four outputs can be connected in parallel (the total load must, however, not exceed 1.8 A).
The status of each output signal is indicated by a yellow LED if +24 V DC is supplied.
The 16 outputs share a common ground connection.

200-IB10xOB6

I/O unit for ten digital input and six digital output signals. The status of each signal is indicated by a yellow LED.

The outputs can deliver up to 2 A to the I/O system.

Each signal is isolated from the logic circuits by an optocoupler and filtered with a low-pass filter. The inputs have a programmable filter time.

200-IE8

I/O unit for eight analogue input signals. The unit has 12-bit resolution and each of the inputs can be either a voltage ($0-$ 10 V DC, $\pm 10 \mathrm{~V}$ DC) or a current ($0-$ $20 \mathrm{~mA}, 4-20 \mathrm{~mA}$) input. Selection of voltage or current is made both by the programming software and by the input on the terminal base unit.

One green LED indicates power on/ off.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers and the eight inputs are single ended.
An additional power supply is required.

200-OE4

I/O unit for four analogue output signals. The unit has 12 -bit resolution and each of the outputs can be either a voltage ($0-10 \mathrm{~V} \mathrm{DC}, \pm 10 \mathrm{~V} \mathrm{DC}$) or a current ($0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$) output. Selection of voltage or current is made both by the programming software and by the output on the terminal base unit.

One green LED indicates power on/ off.
The outputs are, as a group of four, galvanically isolated from the system by optocouplers.
An additional power supply is required.

200-IE4xOE2

I/O unit for four analogue input and two analogue output signals.

Selection of voltage or current is made both by the programming software and directly on the terminal base unit.

One green LED indicates power on/ off.

The inputs and the outputs are, as a group, galvanically isolated from the system by optocouplers.

An additional power supply is required.

200-IP2

I/O unit with two pulse transmitter interfaces, each with four optocoupled inputs. The maximum pulse frequency is 100 kHz . The I/O unit is configured using the control system program.

200-IP2 can be adapted for a wide range of applications, for example, for counting pulses from pulse transmitters or incremental encoders with one or two pulse trains. Quantity counting, positioning and speed calculation are examples of other applications.

200-IP2 has two 16-bit up/down counters, which are individually programmable. The number of edges to be counted in a pulse train can be specified to x 1 , x 2 or x 4 .
Complementary or noncomplementary pulse transmitters can be connected.
The status of each input signal is indicated by a yellow LED. One bicoloured LED indicates function status.

I/O unit with four pulse transmitter interfaces, each with two optocoupled inputs. The maximum pulse frequency is 100 kHz . The I/O unit is configured using the control system program.

200-IP4 can be adapted for a wide range of applications, for example, for counting pulses from flow and density meters, quantity counting and speed calculation.

200-IP4 has two 16-bit counters per channel. Each can be individually configured for either period time measurement, using one 16 -bit counter and accumulating pulse counting using the other 16-bit counter or period time measurement using a 32 -bit counter.

An internal clock (1 or 10 MHz) is used for the period time measurement.

The status of each input signal is indicated by a yellow LED. One bicoloured LED indicates function status.

200-IT8

I/O unit for eight thermocouple input signals with programmable filters and 16-bit resolution. One bi-coloured LED indicates power on/off.

Terminal base unit TB3T must always be used. An additional power supply is required.

200-IR8

I/O unit for eight three-wire RTD input signals with programmable filters and 16-bit resolution. A number of sensors are supported. One bi-coloured LED indicates function status.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers. Each channel can be turned off to improve system throughput.

An additional power supply is required.

200-IR8R

I/O unit for eight four-wire RTD input signals. The inputs have programmable filters and 16 -bit resolution. One sensor type is supported.

The status of each input signal is indicated by a yellow LED. A green LED indicates function status.
The inputs are, as a group of eight, galvanically isolated from the system by optocouplers. Each channel can be turned off to improve system throughput.
An additional power supply is required.

200-IA8

I/O unit for eight digital 120 V AC input signals. The status of each input signal is indicated by a yellow LED. Each signal is filtered with a low-pass filter.

The input signals are sampled at intervals determined by the filter time. The signal status is changed only if two consecutive samples are the same. The filter time is set with the programming software.
The eight inputs share a common voltage connection.

200-0A8

I/O unit for eight digital 120 V AC output signals. The status of each output signal is indicated by a yellow LED.
Output indicators will not work unless 120 V AC is supplied.
The eight outputs share a common 0 V AC connection.

200-OW8

I/O unit for eight relay output signals. The status of each output signal is indicated by a yellow LED.
If the voltage exceeds 132 V , terminal base unit $200-\mathrm{TBN}$ or $200-\mathrm{TBNF}$ must be used.
An additional power supply is required.

200-OB8EP

I/O unit for eight short-circuit proof output signals. The unit is intended for detection of short-circuit condition in its output circuit or low impedance loads causing excessive current drain. Each of the eight output channels has a current sensing circuit. The unit is designed to allow up to 2.0 A current per channel.
The status of each output signal is indicated by a yellow LED. Diagnostics are carried out for each output and a fault is indicated by a red LED.
By pressing a manual reset button, all output faults are reset simultaneously. Diagnostics and reset functions are fully accessible from the application.
The eight outputs share a common ground connection.

General specifications		ON-state current	1.0 mA min. per channel 450 mA max. per channel when in
Power supply	24 V DC (19.2-30 V DC) incl. 5% rip-		$500 \mathrm{~mA} \mathrm{max}$. per channel
	ple acc. to EN 61131-2 standard i.e. $+20 \%,-15 \%$ and max. 5% ripple	OFF-state voltage	31.2 V DC max.
Temperature (unless stated otherwise)		Surge current	
Operating	$\pm 0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	200-OB16	2 A for 50 ms , repeatable every 2 s
Non-operating	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200-OB16P	1.5 A for 50 ms , repeatable every 2 s
Protection rating	IP20	OFF-state leakage	0.5 mA max.
Environment	Industrial areas	Isolation voltage	100% tested at 850 V DC for 1 s
Approvals (when product or packaging is marked)	CE marked and meets EMC directive 89/336/EEC according to EN 50081-2 and EN 50082-2.		between plant and system. No iso tion between individual channels
		Output signal delay	
	Low Voltage Directive 73/23/EEC with	OFF to ON	0.5 ms max.
	suppl. 93/68/EEC acc. to EN 61131-2 (only appl. for units connected to $50-$ 1000 V AC and/or 75-1500 V DC)	ON to OFF	1.0 ms max .
		Internal current consumption (from serial bus)	
	UL listed according to UL 508.	200-OB16	80 mA max.
	UL listed according to UL 508. CSA certified; class 1 div. 2 hazardous	200-OB16P	60 mA max.
	locations.	Power dissipation	5.3 W at 31.2 V DC max.
Package volume		Unit identity	
1 unit	H133 \times W133 \times D93 mm ($1.65 \mathrm{dm}^{3}$)	200-OB16	191H
10 units	H278 \times W470 \times D150 mm ($19.60 \mathrm{dm}^{3}$)	200-OB16P	108H
Dimensions	H $46 \times$ W $94 \times$ D 53 mm	Backplane key code	2
Weight (unless stated otherwise)	0.085 kg excl. package 0.180 kg incl. package	External DC power	
		Supply voltage	24 V DC nom. (19.2-31.2 V DC)
		Supply current	49 mA at 24 V DC ($38 \mathrm{~mA}-65 \mathrm{~mA}$)
		Humidity	Max. 5-95\%, non-condensing
		Fuse	
200-IB16		200-OB16	800 mA (when used in TBNF)
		200-OB16P	Outputs are electronically protected
Number of inputs	16 positive logic	Order codes	200-OB16
Galvanic isolation	Yes (via optocouplers)		200-OB16P
Status indicators	16 yellow LEDs for input indications		
ON-state input voltage	10.0 V DC min., 24 V DC nominal, 31.2 V DC max.		
ON-state input current	2.0 mA min., 8.0 mA nominal at 24 V DC, 12.0 mA max.	200-IB10xOB6	
OFF-state input voltage OFF-state input current	5.0 V DC max.	General specifications:	
	Current must be $\leq 1.5 \mathrm{~mA}$ to be defined as being in OFF state	Galvanic isolation	S.
Filter time	Software programmable	Status indicators	16 yellow LEDs for in/output indica-
Filter	First-order, low-pass filter with time constant $5 \mu \mathrm{~s}$		
		Isolation voltage	100\% tested at 2100 V DC for 1 s
Input impedance	$4.6 \mathrm{k} \Omega$ max.		between plant and system
Isolation voltage	100% tested at 850 V DC for 1 s between user and system. No isolation between individual channels	Internal current consumption (from the serial bus)	35 mA max.
Internal current consumption (from serial bus)		Power dissipation	4.0 W at 31.2 V DC max.
		Unit identity	100 H
	30 mA max.	Backplane key code	2
Power dissipation	6.1 W at 31.2 V DC max.	External DC Power	
Unit identity	281H	Supply voltage	24 V DC nom. (19.2-31.2 V DC)
Counter	5 bits on channel 15.500 Hz max. Min. pulse width 1 ms	Supply current	70 mA at 24 V DC (not incl. outputs)
		Humidity	Max. 5-95\%, non-condensing
Backplane key codeHumidity		Order code	200-IB10xOB6
	Max. 5-95\%, non-condensing		
Order code	200-IB16		
		Input specifications:	
		Number of inputs	10 positive logic, non-isolated
200-OB16, 200-OB16P		ON-state input voltage	10 V DC min., 24 V DC nominal, 31.2 V DC max.
Number of outputs	16 positive logic	ON-state input current	2.0 mA min., 8.0 mA nominal, 11.0 mA max.
Galvanic isolation	Yes (via optocouplers)	OFF-state input voltage	5 V DC max.
Status indicators	16 yellow LEDs for output indications	OFF-state input current	Current $\leq 1.5 \mathrm{~mA}$ to be defined as
ON-state voltage range	10 V DC min., 24 V DC nominal, 31.2 V DC max.	Input impedance	being in OFF state $4.4 \mathrm{k} \Omega$ max.
ON-state voltage drop		Filter time	Software programmable
Output current rating	$0.5 \mathrm{~V} \mathrm{DC} \mathrm{max}$. $8 \mathrm{~A}(16$ outputs at 0.5 A$)$	Filter	First-order, low-pass filter with time constant 100μ (i.e. time to reach 63% of FS)

Output specifications:		Input current range	4-20 mA, 0-20 mA	
Number of outputs	6 positive logic	Input voltage range	$2-10 \mathrm{~V}$ DC, $\pm 10 \mathrm{~V}$ DC, $0-10 \mathrm{~V}$ DC	
ON-state voltage range	10 V DC min., 24 V DC nominal, 31.2 V DC max.	Input resistance	$200 \mathrm{k} \Omega$	
ON-state current	1.0 mA per output min., 2.0 A per output max. 10 A per unit max.	Filter	238Ω	
OFF-state voltage	put max., 31.2 V DC max.		First-order, low-pass filter with time constant 100 ms (i.e. time to reach 63% of FS)	
Output current rating	2 A per output, 10 A per unit	Non-linearity		
Surge current	4 A for 50 ms each, repeatable ev. 2 s	Voltage	0.05\% max.	
OFF-stage leakage	0.5 mA max.	Current	0.10\% max.	
ON-stage voltage drop	$2 \mathrm{~V} D \mathrm{C}$ at $2 \mathrm{~A}, 1 \mathrm{~V} \mathrm{DC}$ at 1 A	Accuracy		
		Voltage terminal	$\pm 0.2 \%$ FS at $25^{\circ} \mathrm{C}$	
		Current terminal	$\pm 0.2 \%$ FS at $25^{\circ} \mathrm{C}$	
200-IP2, 200-IP4		Accuracy drift with temperature		
Number of inputs		Voltage terminal	$\pm 0.0043 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$	
		Current terminal	$\pm 0.0041 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$	
200-IP2	2 pulse counter interfaces, each with 4 inputs	Repeatability $\pm 0.05 \%$ of FS		
200-IP4	4 frequency counter interfaces, each with 2 inputs	Overload (without damage)		
		Voltage	30 V DC continuously	
Counting frequency	Max. 100 kHz . Each signal condition must be stable for at least 2μ s to be	Current	32 mA continuously, one channel at a time max.	
	recognized by the counter logic	Isolation voltage	Type-test voltage: 850 V DC for 1 s between user and system. No isolation between individual channels	
200-IP4 only	Min. 15.3 Hz for a 16 time period measurement and internal clock $=1 \mathrm{MHz}$. Only one period can be measured.			
		Internal current consumption (from serial bus)		
	Min. 153 Hz for int. clock $=10 \mathrm{MHz}$			
Galvanic isolation	Yes (via optocouplers)		20 mA max.	
Status indicators		Power dissipation	3 W at 31.2 V DC max.	
200-IP2	2×6 yellow LEDs for I/O status 1 red/green LED for OK status	Unit identity	1924H	
		Backplane key code	3	
200-IP4	4×2 yellow LEDs for I/O status 4×2 yellow LEDs for selected measurement function 1 red/green LED for OK status	External DC Power		
		Supply voltage	24 V DC nom. (19.2-31.2 V DC)	
		Supply current	60 mA at 24 V DC (typ.)	
Input range (2×4 input signals) Terminal "+" and "-" for each input		Humidity Operating Non-operating Order code	Non-condensing	
		Max. 5-95\%		
Input ON (active)	$\begin{aligned} & \text { Max. +26.4 V DC, (} 24 \text { V DC +10 \%). } \\ & \text { Min. +6 V DC } \end{aligned}$		$\begin{aligned} & \text { Max. 5-80\% } \\ & \text { 200-IE8 } \end{aligned}$	
Input OFF (inactive)	Max. +3.0 V DC Min. -26.4 V DC			
Input current	Typ. 3 mA at 6 V DC Typ. 8 mA at 12 V DC Typ. 15 mA at 24 V DC		200-OE4	
		Number of outputs	4	
Voltage range external power supply	12-24 V DC ± 10 \%	Galvanic isolation	Yes (via optocouplers)	
Current consumption external power supply	150 mA at 12 V DC 75 mA at 24 V DC	Status indicatorsResolution	One green LED for Power 12-bit plus sign	
Isolation voltage	500 V DC	Output voltage range	$2-10 \mathrm{~V}$ DC, $\pm 10 \mathrm{~V}$ DC, $0-10 \mathrm{~V}$ DC	
Internal current consumption (from serial bus)		Output current range	$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$	
	5 mA	Time to reach 63% of FS	24 ms (first-order, low-pass filter time constant)	
Power dissipation	Max. 5 W (at 24 V input voltage at all inputs)	Current load on voltage output	3 mA max.	
Unit identity		Resistive load on mA output		
200-IP2	1800 (hex)		15-750 Ω	
200-IP4	1A00 (hex)	Non-linearity		
Backplane key code	1	Voltage	0.1\%	
Temperature		Current	0.1\%	
Operating	$+5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Accuracy		
Non-operating	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Voltage terminal	$\pm 0.13 \% \mathrm{FS}$ at $25^{\circ} \mathrm{C}$	
HumidityWeight	5-95\%, non-condensing	Accuracy drift with temperature		
	0.12 kg excl. package			
	0.20 kg incl . package	Voltage terminal	$\pm 0.005 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$	
Order codes	$\begin{aligned} & 200-I P 2 \\ & 200-\mathrm{IP} 4 \end{aligned}$	Current terminal Isolation Voltage	$\pm 0.007 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$	
			Type-test voltage: 850 V DC for 1 s between user and system. No isolation between individual channels	
200-IE8		Internal current consumption (from		
Number of inputs	8 single-ended	Power dissipation Unit identity Backplane key code	$\begin{aligned} & 4.5 \mathrm{~W} \text { at } 31.2 \mathrm{~V} \text { DC max. } \\ & 1125 \mathrm{H} \\ & 4 \end{aligned}$	
Galvanic isolation	Yes (via optocouplers)			
Status indicators	One green LED for Power			
Resolution	12-bit			

External DC Power	
Supply voltage	24 V DC nom. (19.2-31.2 V DC)
Supply current	70 mA at 24 V DC (not incl. outputs)
Humidity	Non-condensing
Operating	Max. 5-95\%
Non-operating	Max. $5-80 \%$
Order code	$200-0 E 4$

200-IE4xOE2

General specifications:

Number of inputs	4 single-ended
Number of outputs	2 single-ended
Galvanic isolation	Yes (via optocouplers)
Status indicators	One green LED for Power
Resolution	12-bit
Isolation Voltage	Type-test voltage: 850 V DC for 1 s between user and system. No isolation between individual channels
Internal current consumption (from serial bus)	20 mA max.
Power dissipation	4.0 W at 31.2 V DC max.
Unit identity	1526 H
Backplane key code	5
External DC Power	
Supply voltage	24 V DC nom. (19.2-31.2 V DC)
Supply current	70 mA at 24 V DC (not incl. outputs)
Humidity	Non-condensing
Operating	Max. 5-95\%
Non-operating	Max. 5-80\%
Order code	200-IE4xOE2

Input specifications:

Number of inputs	4 single-ended
Input voltage range	$2-10 \mathrm{VDC}, \pm 10 \mathrm{VDC}, 0-10 \mathrm{VDC}$
Input current range	$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$

Input resistance
Voltage $\quad 200 \mathrm{k} \Omega$
Current 238Ω
Filter First-order, low-pass filter with time constant 100 ms (i.e. time to reach 63\% of FS)
Accuracy

Voltage terminal	$\pm 0.3 \%$ FS at $25^{\circ} \mathrm{C}$
Current terminal	$\pm 0.3 \% \mathrm{FS}$ at $25^{\circ} \mathrm{C}$

Accuracy drift with temperature

Voltage terminal	$\pm 0.0045 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Current terminal	$\pm 0.0045 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$

Overload without damage

Voltage	30 V DC continuously
Current	32 mA continuously, one channel at a
	time max.

Output specifications:

Number of outputs	2 single-ended, non-isolated
Output current range	$4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$
Output voltage range	$2-10 \mathrm{VDC}, \pm 10 \mathrm{~V}$ DC, $0-10 \mathrm{~V}$ DC
Time to reach 63% of FS	24 ms (first-order, low-pass filter time constant)
Current load on voltage output	3 mA max.
Resistive load on mA output	$15-750 \Omega$
Non-linearity Current Voltage	0.1%
	0.1%

Accuracy	
Voltage terminal	$\pm 0.14 \% \mathrm{FS}$ at $25^{\circ} \mathrm{C}$
Current terminal	$\pm 0.43 \% \mathrm{FS}$ at $25^{\circ} \mathrm{C}$

Accuracy drift with temperature
Voltage terminal $\quad \pm 0.005 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Current terminal $\quad \pm 0.007 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$

200-IT8

Number of inputs	8
Galvanic isolation	Y

Status indicator $\quad \mathrm{Bi}$-colour (green/red) LED for OK
Resolution
Input voltage range $\pm 76.5 \mathrm{mV}$ DC
Overvoltage capability $35 \mathrm{~V} \mathrm{DC}, 25 \mathrm{VAC}$ continuous at $25^{\circ} \mathrm{C}$, 250 V peak transient
Accuracy with filter $\quad 0.025 \%$ of $\mathrm{FSR} \pm 0.5^{\circ} \mathrm{C}$ max.
Accuracy without filter 0.05% of $\mathrm{FSR} \pm 0.5^{\circ} \mathrm{C}$ max.
Filter
Internal current
consumption (from
serial bus)
Normal mode noise
rejection
Common mode
rejection
System throughput
Open-thermocouple detection
Open-thermocouple detection time
Input offset drift with temperature
Gain drift with
temperature
Overall drift with temperature
Supported thermocouple types

Power dissipation

Unit identity
Backplane key code
External DC Power
Supply voltage
Supply current
Humidity
Operating
Non-operating
Order code

Programmable

20 mA max.
-60 dB at 60 Hz
-115 dB at $60 \mathrm{~Hz} ;-100 \mathrm{~dB}$ at 50 Hz
Progammable 28 - 325 ms for 1 channel; 2.6 s for 8 channels

Out of range reading (upscale)
1 s , typically
$\pm 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max.
$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$50 \mathrm{ppm} 1^{\circ} \mathrm{C}$ of span max.
Millivolt $\pm 76.5 \mathrm{mV}$
Type B: $+300-+1800^{\circ} \mathrm{C}$
Type C: $\pm 0-+2315^{\circ} \mathrm{C}$
Type E: $-270-+1000^{\circ} \mathrm{C}$
Type J: $-210-+1200^{\circ} \mathrm{C}$
Type K: -270-+1372 ${ }^{\circ} \mathrm{C}$
Type N: -270 $-+1300^{\circ} \mathrm{C}$
Type R: $-50-+1768^{\circ} \mathrm{C}$
Type S: -50-+1768 ${ }^{\circ} \mathrm{C}$
Type T: $-270-+400^{\circ} \mathrm{C}$
3 W at 31.2 V DC max.
1 BOOH
3

24 V DC nom. (19.2-31.2 V DC)
60 mA at 24 V DC
5-95\%, non-condensing
5-80\%, non-condensing
200-IT8

200-IR8

Number of inputs 8
Galvanic isolation Yes (via optocouplers)
Status indicators Bi-colour (green/red) LED for Power
Resolution
Input range
Overvoltage
capability
Filter
Accuracy without
calibration and at low humidity levels

16-bit across 435Ω
1-433 Ω
$\pm 35 \mathrm{~V}$ DC, 25 V AC continuous at $25^{\circ} \mathrm{C}$,
250 V peak transient
Programmable
0.05% of FSR max. in normal mode (0.01% of FSR typ. in enhanced mode) at $25^{\circ} \mathrm{C}$

Internal current		RTD algorithm	ITS 90
consumption (from serial bus)	20 mA max.	Supported sensors (resistance)	$\begin{aligned} & 100 \Omega \text { Pt Euro }-60-+160^{\circ} \mathrm{C} \\ & (\alpha=0.00385) \text { IEC } 751 \end{aligned}$
Normal mode noise rejection	60 dB at 60 Hz	Unit identity	1900 H
Calibration	Programmable	Power dissipation	3 W at 30.0 V DC max.
Common mode rejection	120 dB at $60 \mathrm{~Hz}, 100 \mathrm{~dB}$ at 50 Hz . For A/D filter cut-off at 10 Hz	Backplane key code External DC power	2
System throughput	Normal mode, programmable 28 ms$325 \mathrm{~ms} /$ channel. Enhanced mode, programmable $56 \mathrm{~ms}-650 \mathrm{~ms} /$ channel	Supply voltage Supply current Temperature	24 V DC nominal (19.2-30.0 V DC) 100 mA at 24 V DC
Open-wire detection	Out of range reading (upscale)	Operating Non-operating	$\begin{aligned} & +5^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Open-wire detection time	<1 s	Humidity	Non-condensing
RTD excitation current	$718 \mu \mathrm{~A}$	Operating Non-operating	Max. 5-95\% Max. 5-80\%
Input offset drift with temperature	$1.5 \mathrm{~m} / /^{\circ} \mathrm{C}$ max.	Order code	200-IR8R
Gain drift with temp.	$35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Supported sensors (resistance)	$\begin{aligned} & 1-433 \Omega \\ & 500 \Omega \mathrm{Pt} \text { Euro }-200-+630^{\circ} \mathrm{C} \end{aligned}$	200-IA8	
	200Ω Pt Euro -200-+630 ${ }^{\circ} \mathrm{C}$	Number of inputs	8 (1 group of 8), non-isolated
	100Ω Pt Euro -200-+870 ${ }^{\circ} \mathrm{C}$	Galvanic isolation	Yes (via optocouplers)
	$500 \Omega \mathrm{Ni}-60-+250^{\circ} \mathrm{C}$	Status indicators	8 yellow LEDs (field side indication)
	$200 \Omega \mathrm{Ni}-60-+250^{\circ} \mathrm{C}$	ON-state voltage	65 V AC min.
	$120 \Omega \mathrm{Ni}-80-+290^{\circ} \mathrm{C}$ $100 \Omega \mathrm{Ni}-60-250{ }^{\circ} \mathrm{C}$	OFF-state voltage	43 V AC max.
	$10 \Omega \mathrm{Cu}-200-+260^{\circ} \mathrm{C}$	ON-state current	7.1 mA min .
Unit identity	1825H	OFF-state current	2.9 mA max.
Power dissipation	3 W at 31.2 V DC max.	Filter time	Software programmable
Backplane key code	7	Filter	First-order, low-pass filter with time constant 8 ms
External DC power Supply voltage Supply current	24 V DC nominal 60 mA at 24 V DC	Isolation voltage	100% tested at 2150 V AC for 1 s between user and system. No isolation between individual channels
Humidity	Non-condensing	Input impedance	$10.6 \mathrm{k} \Omega$ nominal
Operating	Max. 5-95\%	Internal current	
Non-operating	Max. 5-80\%	consumption (from	
Order code	200-IR8	serial bus)	30 mA max.
		Power dissipation	4.5 W at 132 V AC max.
		Unit identity	285H
200-IR8R		Backplane key code	8
Number of inputs	8	External AC Power	
Galvanic isolation	Yes	Input frequency	$47-63 \mathrm{~Hz}$
Status indicators	8 yellow LEDs for I/O status	Voltage range	85-132 V AC
	1 green LED for OK status	Humidity	Max 5-95\%, non-condensing
Resolution	16-bits	Order code	200-IA8
Input range	$0-100 \%$ ($0-65535$) corresponding to $60^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$		
Overvoltage capability	$\pm 35 \mathrm{~V}$ DC, 25 V AC continuous at $25^{\circ} \mathrm{C}$, 250 V peak transient	200-OA8	
Filter	Programmable		
Accuracy	$\pm 0.1^{\circ} \mathrm{C}$ in the range -5 to $+100^{\circ} \mathrm{C}$ Pt100 sensor: Type IEC 751	Galvanic isolation	Yes (via optocouplers)
Long term stability		Status indicators	8 yellow LEDs
1 year	$\pm 0.006{ }^{\circ} \mathrm{C}$	Output voltage range	85-132 V AC, 47-63 Hz
3 years	$\pm 0.013^{\circ} \mathrm{C}$	Output current range	4.0 A (8 outputs at 500 mA)
Internal current		ON-state voltage drop	1.0 V AC at 0.5 A min .
consumption (from serial bus)	20 mA max.	Inrush current	7 A for 45 ms , repeatable every 8 s
Normal mode noise rejection	60 dB at 50 Hz for A / D filter cut-off at 10 Hz	OFF-state leakage Isolation voltage	2.25 mA max. 100% tested at 1250 V AC for 1 s between user and system. No isolation
Calibration	Factory calibrated		between individual channels
Common mode rejection	120 dB at 60 Hz ; 100 dB at 50 Hz for A/D filter cut-off at 10 Hz	Output signal delay OFF to ON	1/2 cycle max.
System throughput	150 ms per channel at 50 Hz	ON to OFF	1/2 cycle max.
Open or short-circuit RTD detection	Out of range reading and individual fault indication	Internal current consumption (from	
Open-wire detection		serial bus)	80 mA max.
or short-circuit detection time	<1 s	Power dissipation	5.2 W at 132 V AC
		Unit identity	195 H
current	About 1.8 mA , alternating direction	Backplane key code	8

External AC Power		Output signal delay	
Supply voltage	120 V AC nominal	OFF to ON	8 ms max . (time from a valid output on
Input frequency	$47-63 \mathrm{~Hz}$		signal-to-relay energization by the mod-
Voltage range	85-132 V AC		ule)
Supply current	150 mA min.	ON to OFF	26 ms max. (time from a valid output on signal-to-relay de-energization by the
Surge current capability	50 A for $1 / 2$ cycle at power-up max.		module)
Humidity	Max. 5-95\%, non-condensing	consumption (from	
Fuse	1.6 A , slow (when used in TBNF)	serial bus)	69 mA max.
Order code	200-OA8	Power dissipation	5.5 W max.
		Unit identity	199 H
		Backplane key code	8
200-OW8		External AC Power	
		Supply voltage	24 V DC
Number of outputs	8 (1 group of 8), normally open electromechanical relays	Voltage range	19.2 to 31.2 V DC (incl. 5\% ripple)
Galvanic isolation	Yes (via optocouplers and relays)	Fus	Max 3 A (when used in TBNF)
Status indicators	8 yellow LEDs		Max 5-95\%, non-condensing
Output voltage range (load dependent)	$5-30 \mathrm{~V}$ DC at 2.0 A resistive 48 V DC at 0.5 A resistive 125 V DC at 0.25 A resistive 125 V AC at 2.0 A resistive	Order code	200-OW8
	240 V AC at 2.0 A resistive	200-OB8EP	
Output current rating (at rated power)			
Resistive	2 A at 5-30 V DC	Number of outputs	8 (1 group of 8)
	0.5 A at 48 V DC 0.25 A at 125 V DC	Galvanic isolation	Yes (via optocouplers)
	2 A at 125 V AC 2 A at 240 V AC	Status indicators	8 yellow LEDs for status indications and 8 red LEDs for diagnostic fault indication
Inductive (steady state)	2.0 A at $5-30 \mathrm{VDC}, \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ 0.5 A at $48 \mathrm{~V} \mathrm{DC}, \mathrm{L/R}=7 \mathrm{~ms}$ 0.25 A at $125 \mathrm{~V} \mathrm{DC}, \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$ $2.0 \mathrm{~A}, 15 \mathrm{~A}$ at operation of a relay at 125 $\mathrm{VAC}, \cos \varphi=0.4$ 2.0 A, 15 A at operation of a relay at 240 $\mathrm{VAC}, \cos \varphi=0.4$	ON-state voltage range	19.2 V DC min., 24 V DC nominal, 31.2 V DC max.
		ON-state voltage drop	0.2 V DC max.
		Output current rating	10 A (e.g. 8 outputs at $1.25 \mathrm{~A}, 5$ outputs at 2.0 A or similar output/A combinations, tot. $\leq 10 \mathrm{~A}$)
Power rating (steady state)		ON-state current	1.0 A min. per channel 2.0 A max. per channel
Resistive	250 W max. for 125 V AC	OFF-state voltage	31.2 V DC max.
	60 W max. for 30 V DC	Surge current	4 A for 10 ms , repeatable every 3 s
	24 W max. for 48 V DC	OFF-state leakage	0.5 mA max.
	31 W max. for 125 V DC	Isolation voltage	100\% tested at 850 V DC for 1 s
Inductive	250 VA max. for 125 V AC 480 VA max. for 240 V AC	Isolation volage	between plant and system. No isolation between individual channels
	60 VA max. for 30 V DC 24 VA max. for 48 V DC	Output signal delay	
	31 VA max. for 125 V DC	OFF to ON	0.4 ms max.
Initial contact resistance		ON to OFF	0.2 ms max .
	$30 \mathrm{~m} \Omega$	Internal current consumption (from serial bus)	
Switching frequency	1 operation $/ 3 \mathrm{~s}$ (0.3 Hz at rated load) max.		73 mA max.
Operate/release time	10 ms , max.	Power dissipation	5.5 W at 31.2 V DC max.
Bounce time	1.2 ms , mean	Unit identity	19DH
Contact load	$100 \mu \mathrm{~A}$ at $100 \mathrm{mV} \mathrm{DC} \mathrm{min}$.	Backplane key code	
Expected life of electrical contacts	100,000 operations min. at rated loads	Humidity Order code	Max. 5-95\%, non-condensing 200-OB8EP
OFF-state leakage current	1 mA max. at 240 V AC through snubber circuit		
Isolation voltage			
between any 2 sets of			
customer load to logic	2550 V DC for 1 s		
customer load to 24 V			
DC supply	2550 V DC for 1 s		
customer 24 V DC supply to logic	850 V DC for 1 s		

