ASTAT controller

version AST10_04, browser-version

Crane motion Function diagrams
 25-2200 A, 380-600 V

Section	Function Group
1	Identity
2	Run type
3	Supply information
4	Motor information
5	ASTAT configuration
6	Brake information
7	Speed feedback
8	Speed reference
9	Speed regulator
10	Speed supervision
11	Current/torque regulator
12	Rotor resistor
13	Selectable DO
14	Load functions
16	Soft limit switch function
17	Rotor system
18	Torque measurment
19	Positioning system
20	Master-follower
21	General logic and fault handling

Click the section number or group name to view the function group

Parameters are shown as $<X X . X X>$, signals as [$X X . X X$]. All parameters and signals in the diagrams are clickable, and are linked to a list where a short explanation can be found.

The black boxes found on some signals show that the signal is used in other places and they are linked together. If there are more than two of a specific signal there is a list to choose from attached to the first signal.

In the beginning of each section there is a parameter- and a signal list. The respective identities are clickable and linked to the fist occurrence of the parameter or signal. If there is more than one parameter there is a list to choose from attached to the first parameter.

For navigating more easily there are buttons at the top of each page. Use these to back for forward. You can also choose a specific page to go to by clicking on one of the flaps at the bottom of the screen.

For each parameter there is a recommendation when to decide it and set the value. In the SET column you find D, S or X. A Dparameter should be set in the Design-phase. An S-parameter should be tuned at Start Up. X-parameters are only used for tuning with special requirements as well as for some special functions that are not touched at all for most installations.

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Motion identity.	1	255	1	D	0101	DR_ADD

Description	Unit	IDENTITY	English text
The version of the ASTAT program. AST10_04 is indicated by 10.04, etc. Older versions than AST10_02 will give 00.00	-	0151	AST_VERS
The generation of control boardDAPC 100. AST10_04 can be run on at least generation 1 and 2 of DAPC 100.	-	0152	BOARDGEN
The version of software of Rotor measurement unit DATX 130. Version 1 is labelled R1, version 2 is labelled R2 etc.			
The signal gives a value 0, 2, 3.... Value 15 is given when no DATX 130 is used (i. e. for DARA 1000) and for earlier versions than R2. Value 2 is given for version R2, value 3 is given for version R3 etc.	-		
Version of ASTAT program AST10_04 (see signal 01.51 above) requires software version R2 of DATX 130.		0153	RSW_GEN
The version of soffware of Torque measurement unit DATX 132. Version 1 is labelled T1, version 2 is labelled T2 etc.			
The signal gives a value 0, 2, 3.... Value 15 is given when no DATX 132 is used (i. e. for DARA 1000) and for earlier versions than T2. Value 2 is given for version T2, value 3 is given for version T3 etc. Version of ASTAT program AST10_04 (see signal 01.51 above) requires software version T2 of DATX 132.	-		0154

Delivered as 5 for duty with master switch connected direct to DARA without cabin I/O Set $\mathbf{0}$ for installation with one or two cabin I/O for master switch connection. Set 1 for one cabin I/O for master switch and two for mirror wise signal transfer. Set 5 for installations without cabin I/O.

MIN	MAX	NORM	SET	IDENTITY	English text
0	5	5	D	0201	RUN_TYPE

Description	Unit	IDENTITY English text	

ASTAT

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Line and motor nominal voltage. Unit: V.	380	600	400	D	0301	MAINS_VO
It is delivered as 50 and can be set to either 50 or 60. Unit: Hz.	50	50/60	50	D	0302	FREQUENC
The smallest voltage that is accepted before the motion is stopped.	70	100	80	S	0303	MIN_Vopc
Line voltage measurement transformer step down. Example: a $3,3 \mathrm{kV}$ line voltage Thyristor Module requires a step down of $100 \%=82 \%$. The step down transformer shall have the ratio 3300 : 600. Parameter 0301 shall be set to 600. Also the motor voltage measurement requires a step down transformer of the same type.	0	100	0	D	0304	LN_VM_RD

Description	Unit	IDENTITY	English text
Actual line voltage	V	0350	VLINE_AV
Actual line frequency	Hz	0351	FREQ_ACT

ASTAT ${ }^{\oplus}$

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Numbers of connected motors.	1	16	1	D	0401	NO_MOTOR
Rated kW of each motor.	1	2000	1	D	0402	kW_MOTOR
Rated current of each motor. Unit: A.	1	2200	1	D	0403	IN_MOTOR
7The motor's or motors' rated speed in min^{-1}.	340	3600	980	D	0404	NN_MOTOR
Number of poles.	2	16	6	D	0405	NO_POLES
Pull out Torque of the motor in per cent of the rated torque.	150	400	250	D	0406	MAX_TOpc
Rated rotor voltage of the motor(s). The voltage is only used for supervision of resistors and the rotor and is of this reason only interesting for DARA 1001, 1010	50	600	350	D	0407	U_ROTOR
Motor voltage measurement transformer step down. Example: a 3,3 kV line voltage Thyristor Module requires a step down of $100 \%=82 \%$. The step down transformer shall have the ratio 3300 : 600. Parameter 0301 shall be set to 600. Also the line voltage measurement requires a step down transformer of the same type.	0	100	0	D	0408	MO_VM_RD
Motor(s) stator connection. 0 : Star connection. 1: Delta connection. Most motors are Delta connected. For control it is only of importance for DARA 1001 and 1010, but it is good to keep record of the installed motors for all installations.	0	1	1	D	0412	MOT_CONN

Description	Unit	IDENTITY	English text
Synchronous motor speed	RPM $\left(\mathrm{min}^{-1}\right)$	0450	SYNCH_SP
Rated motor torque	Nm	0451	TO_RATED

ASTAT ${ }^{\circ}$ gel astio 04

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Rated current of the Thyristor module. In case of Parallel bridge combination, le is the sum of the two units together. Unit: A.	25	2200	25	D	0501	IN_ASTAT
Type of Control System Module. For DARA 1000 or DARA 1010, enter 1000. For DARA 1001, enter 1001.	1000	1001	1000	D	0502	DARA
Parameter to set whether the configuration shall be 11 for "Hoist without Shared Motion", 12 for "Hoist with Shared Motion", 21 for "Travel without Shared Motion", or 22 for "Travel with Shared Motion".	$\begin{aligned} & 11, \\ & 12, \\ & 21, \\ & 22 \end{aligned}$	$\begin{aligned} & 11, \\ & 12, \\ & 21, \\ & 22 \end{aligned}$	11	D	0503	DRI_TYPE
Type of limit switch for movements. 1: Classic based on four switches. 2: Soft based on Pulse transmitter. 0: Override limit switches, block fault detection (only for rescue purpose)	1	2	1	D	0504	L_SW_TYP
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0505	USE_PTC1
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0506	USE_PTC2
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0507	USE_PTC3
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0508	USE_PTC4
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0509	USE_DI05
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0510	USE_DI06
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0511	USE_DI07
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0512	USE_DI08
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0513	USE_DI09
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0514	USE_DI10
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0515	USE_DI11
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0516	USE_DI12
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0517	USE_DI13
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0518	USE_DI14
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0519	USE_DI15
Parameter group set to define whether a input shall be active or not. 1 if used.	0	1	1	D	0520	USE_DI16
Parameter group set to define whether a input shall be active or not. 1 if a rotor of a motor is connected to board DATX $130-\mathrm{X} 1$ contact	0	1	0	X	0521	USE_ROT1
Parameter group set to define whether a input shall be active or not. 1 if a rotor of a motor is connected to board DATX 130 -X2 contact	0	1	0	X	0522	USE_ROT2
Parameter group set to define whether a input shall be active or not. 1 if a rotor of a motor is connected to board DATX $130-\mathrm{X} 3$ contact	0	1	0	X	0523	USE_ROT3
Parameter group set to define whether a input shall be active or not. 1 if a rotor of a motor is connected to board DATX 130 -X4 contact	0	1	0	X	0524	USE_ROT4
Which motor is active for speed feedback for Rotor feedback. 1 for first input to DATX 130, 2 for second, 3 for third and 4 for fourth input to DATX 130. value has no importance if other speed feedback is used.	0	4	1	D	0525	ROTOR_FB
With PTC_ACTN = 1, a high resistance value for PTC3 or PTC4 gives a trip. PTC1 or PTC2 always give a trip. With PTC_ACTN $=0$, a high resistance value for PTC3 or PTC4 only gives a flashing indication.	0	1	1	D	0526	PTC_ACTN

Description	Unit	IDENTITY	English text
Process I/O analog input No. 01. PTC No. 1; 1: Temp. OK. Also 1 when parameter 0505 is set to 0.	Bool	0540	EFF_PTC1
Process I/O analog input No. 02. PTC No. 2; 1: Temp. OK. Also 1 when parameter 0506 is set to 0.	Bool	0541	EFF_PTC2
Process I/O analog input No. 03. PTC No. 3; 1: Temp. OK. Also 1 when parameter 0507 is set to 0. Process I/O analog input No. 04. PTC No. 4; 1: Temp. OK. Also 1 when parameter 0508 is set to 0.	Bool	0542	EFF_PTC3

Description	Unit	IDENTITY	English text
Process I/O analog input No. 05. Load cell (for system with Cabin I/O)/ speed reference (for system with master switch connected direct to DARA I/O).	V	0544	AlN05_1
Process I/O analog input No. 06. Additional speed reference without any ramp.	V	0545	SPREF_NR
Process I/O analog input No. 07. Additional torque reference without any ramp.	V	0546	TQREF_NR
Process I/O analog input No. 08. Speed feedback from tacho generator. Range 10 V : Value $32767=10 \mathrm{~V}$. Range 50 V : Value $32767=58,7 \mathrm{~V}$. Range 100 V: Value $32767=107,3$ VDATX $110-\mathrm{X} 6: 7-8$ AI 8(8)	Value	0547	NFEEDBTG
Process I/O DI No. 01. Pilot signal for crane contactor ON.	Bool	0548	ON
Process I/O DI No. 02. For fault reset without making Crane ON.	Bool	0549	LO_RESET
Process I/O DINo. 03. Hoist + remote I/O: Macro selection. Hoist without remote I/O: Master switch in neutral. Travel + remote I/O: Macro selection. Travel without remote I/O: Master switch in neutral	Bool	0550	DIN03_1
Process I/O DINo. 04. Hoist + remote I/O: Macro selection. Hoist without remote I/O: Master switch, full speed. Travel + remote I/O: Macro selection. Travel without remote I/O: Master switch, full speed	Bool	0551	DIN04_1
Process I/O DI No. 05 . Also 1 when parameter 0509 is set to 0 . Pre limit switch A.	Bool	0552	EFF_DI05
Process I/O DI No. 06. Also 1 when parameter 0510 is set to 0 . Pre limit switch B.	Bool	0553	EFF_DI06
Process I/O DI No. 07. Also 1 when parameter 0511 is set to 0 . Stop limit switch A.	Bool	0554	EFF_DI07
Process I/O DI No. 08. Also 1 when parameter 0512 is set to 0. Stop limit switch B.	Bool	0555	EFF_DI08
Process I/O DI No. 09. Also 1 when parameter 0513 is set to 0. Hoist + remote I/O: Relay 1. Hoist without remote I/O: Relay. Travel + remote I/O: Relay 1. Travel without remote I/O: Relay 1	Bool	0556	EFF_DI09
Process I/O DINo. 10. Also 1 when parameter 0514 is set to 0. Hoist + remote I/O: Brake lifter 1. Hoist without remote I/O: Brake lifter. Travel + remote I/O: Brake lifter 1 . Travel without remote I/O: Brake lifter	Bool	0557	EFF_DI10
Process I/O DINo. 11. Also 1 when parameter 0515 is set to 0. Hoist + remote I/O: Relay 2. Hoist without remote I/O: Master switch direction A. Travel + remote I/O: Relay 2. Travel without remote I/O: Master switch direction A	Bool	0558	EFF_D111
Process I/O DINo. 12. Also 1 when parameter 0516 is set to 0 . Hoist + remote I/O: Brake lifter 2. Hoist without remote I/O: Master switch direction B. Travel + remote I/O: Brake lifter 2. Travel without remote I/O: Master switch direction B	Bool	0559	EFF_DI12
Process I/O DINo. 13. Also 1 when parameter 0517 is set to 0 . Hoist + remote I/O: Overload, contact. Hoist without remote I/O: Overload, contact. Travel + remote I/O: Relay 3. Travel without remote I/O: Relay 2	Bool	0560	EFF_DI13
Process I/O DINo. 14. Also 1 when parameter 0518 is set to 0. Hoist + remote I/O: Brake lifter 3. Hoist without remote I/O: Master switch, step 2. Travel + remote I/O: Brake lifter 3. Travel without remote I/O: Master switch, step 2	Bool	0561	EFF_D14
Process I/O DI No. 15. Also 1 when parameter 0519 is set to 0. Hoist + remote I/O: Overspeed monitor, switch. Hoist without remote I/O: Overspeed monitor, switch. Travel + remote I/O: Relay 4. Travel without remote I/O: -	Bool	0562	EFF_DI15
Process I/O DI No. 16. Also 1 when parameter 0520 is set to 0. Hoist + remote I/O: Brake lifter 4. Hoist without remote I/O: Master switch, step 3. Travel + remote I/O: Brake lifter 4. Travel without remote I/O: Master switch, step 3	Bool	0563	EFF_DI16

Description	Unit	IDENTITY	English text
Process I/O analog output No. 01. Line current in \% of the connected motor(s) rated current. $10 \mathrm{~V}=400 \%$ if parameter $05.29=0$. Speed reference in $\% .10 \mathrm{~V}=200 \%$ if parameter $05.29=1$	V	0564	AO01_1
Process I/O analog output No. 02. Torque reference in \% of the motor(s) rated torque. $+10 \mathrm{~V}=+400 \%$ if parameter $05.30=0$. Actual speed in \%. $10 \mathrm{~V}=200 \%$ if parameter $05.30=1$. If parameter $14.30=1$, this AO is taken over by the Load functions, and the output value in Volt has another interpretation.	V	0565	AO02_1
Process I/O DO No. 01. Rotor contactor K0 / Cable reel contactor / Thyristor fan.	Bool	0566	DO01_1
Process I/O DO No. 02. Rotor contactor K1	Bool	0567	RCON_K1
Process I/O DO No. 03. Rotor contactor K2	Bool	0568	RCON_K2
Process I/O DO No. 04. Rotor contactor K3	Bool	0569	RCON_K3
Process I/O DO No. 05. Brake lift	Bool	0570	BR_LIFT
Process I/O DO No. 06. Delayed brake lift	Bool	0571	DBR_LIFT
Process I/O DO No. 07. A fault has occurred.	Bool	0572	FAULT
Process I/O DO No. 08. Normal:No dangerous Fault. Shared motion: Motion 2 selected	Bool	0573	SH_MOT
Cabin I/O analog input No. 01. Analog continuous reference from Master switch. (100% ref. $=$ synch. speed). For motion No. 1 of shared motion.	\%	0574	AIN01_AC
Cabin I/O analog input No. 02. Analog continuous reference from Master switch. (100% ref. =synch. speed). For motion No. 2 of shared motion.	\%	0575	AIN02_AC
Active Cabin I/O DI No. 01. Master switch in neutral position.	Bool	0576	DIN01_AC
Active Cabin I/O DI No. 02. Master switch in direction A.	Bool	0577	DIN02_AC
Active Cabin I/O DI No. 03. Master switch in direction B.	Bool	0578	DIN03_AC
Active Cabin I/O DI No. 04. Hoist: By-pass speed limitation due to slack rope. Travel: Lift the brakes	Bool	0579	DIN04_AC
Active Cabin I/O DI No. 05. Master switch, step 2.	Bool	0580	DIN05_AC
Active Cabin I/O DI No. 06. Master switch, step 3.	Bool	0581	DIN06_AC
Active Cabin I/O DI No. 07. Hoist: Tare of load indicator. Travel Master switch, step 4 (of five steps)	Bool	0582	DIN07_AC
Active Cabin I/O DI No. 08. Master switch, full speed	Bool	0583	DIN08_AC
Cabin I/O analog output No. 01. Load torque in \% of motors rated torque. $-400 \% \ldots 0 \ldots+400 \%$ of rated torque.	\%	0584	AO01_C
Cabin I/O analog output No. 02. Actual speed $-200 \% \ldots 0 \ldots+200 \%$ of synchronous speed.	\%	0585	AO02_C
Cabin I/O DO No. 01. High temperature thermistor (Fixed light: trip, flash light: warning)	Bool	0586	DO01_C
Cabin I/O DO No. 02. Limit switch brake lifter acknowledge error.	Bool	0587	DO02_C
Cabin I/O DO No. 03. Trip thermal relay	Bool	0588	DO03_C
Cabin I/O DO No. 04. Fault in rotor or speed measurement	Bool	0589	DO04_C
Cabin I/O DO No. 05. Hoist: To high load to lift (Fixed light: Blocked, flash light: warning). Travel with SwayControl: Running with Hoist 1	Bool	0590	DO05_C
Cabin I/O DO No. 06. Hoist: trip overspeed monitor. Travel with SwayControl: Running with Hoist 2	Bool	0591	DO06_C
Cabin I/O DO No. 07. High temperature in thyristor stack.	Bool	0592	DO07_C
Cabin I/O DO No. 08. Fixed light: ASTAT OK. Flash light: Check error code in ASTAT controller.	Bool	0593	DO08_C
Conditions to rotate thyristor cooling fans. Note Group!	Bool	2456	FANS_ON
Temperature in degree C of thyristor cooler (only for Thyristor modules with fans). Note Group!	Value	2457	THY_TEMP

ASTAT ${ }^{\circledR}$

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Speed at which the mechanical brakes is applied. As a percentage of the synchronous speed 0 .. 10%. Normal 2%.	0	10	2	S	0601	ZER_SPpc
Time in which the brake must reach open position; otherwise there is a fault. $0,1 \ldots 10$ seconds. Normal is 1 second $=1000 \mathrm{~ms}$. Set time in ms .	100	10000	1000	D	0602	BRA_AC_T
Time, corresponding to at least normal closing time for the brake, during which the motor will be held with electrical torque after order to close brake. 0,1 .. 1,0 seconds. Normal is 0,1 seconds $=100 \mathrm{~ms}$. Set time in ms . This time is ignored by travels.	0	1000	100	S	0603	BRA_EL_T
Time after which the brake shall be kept with only holding DC-voltage; could be economy resistor or split solenoid. 0,5 .. 5,0 s. Normal is 1,5 second $=1500 \mathrm{~ms}$. Set time in $\mathbf{~ m s}$.	500	5000	1500	D	0604	BRA_DC_T
Time at stop for which the setting of the brake is delayed. During this time the motion is softly electrically braked to damp out sway in load. Braking current is set with 11.28, 100\% gives about 30% nominal motor torque as braking torque. Set time in ms. This time is ignored by hoists.	0	10000	0	X	0606	BRA_DELA
Kick in up-direction as percent of the synchronous speed during Electrical braking time (parameter 06.03).	0	100	0	X	0607	ZERO_OFF
Time lag for safety setting of brake based on the speed reference independent of the actual speed measurement. Time in ms.	0	32000	1000	X	0608	BR_REF_T
Set 1 to activate the early warning brake closing supervision (for not shared motion drives only).	0	1	0	D	0609	EARLY_WG

Description	Unit	IDENTITY	English text
Latching of signal 06.55. Zero speed and master switch in neutral position are not needed.	Bool	0654	DBLCK
Logical conditions, like no faults, zero speed detected and master switch in neutral position, to start to control the motion are present.	Bool	0655	DBLCK_C
We have three accepted phases connected.	Bool	0656	LINE_OK
Regulators opened, voltage on motor, brake lifted as we intend to run.	Bool	0657	RELEASE
OK to start to run in direction A; no stop limit switch hit, direction signal exists and there is no mechanical overload in this direction.	Bool	0658	RUN_A
OK to start to run in direction B; no stop limit switch hit, direction signal exists and (there is no mechanical overload in this direction).	Bool	0659	RUN_B

ASTAT ${ }^{\circledR}$ rel.ASTIO 04

| Description | Unit | IDENTITY | English text |
| :--- | :---: | :---: | :--- | :--- |
| Actual motor speed in \% of synchronous speed. Measured value before
 filtering. | $\%$ | 0750 | NACT |
| Actual motor speed in \% of synchronous speed, filtered value. | $\%$ | 0751 | NACTMV |
| The deviation between Actual speed and Reference speed in $\%$ of the
 synchronous speed. | $\%$ | 0752 | SPMEASER |

ASTAT ${ }^{\circledR}$

Description	MIN	MAX	NORM	SET	IDENTITY	English text
The analogue reference input as well as the						
put from the PC-based Tool (but not from						
step control) is shaped by a function generator prior to the ramp generator. Selection between						
1: $u_{2}=u_{1}$,	1	5				
2: $u_{2}^{2}=\operatorname{SIGN}(\mathrm{u} 1)^{*} \mathrm{u}^{2}$,						
3: $u_{2}=\operatorname{SIGN}\left(u_{1}\right){ }^{*} \operatorname{MAX}\left(\left\|u_{1}\right\| ; ~ R E F M I N\right)$, 4: $u_{2}=\operatorname{SIGN}\left(u_{1}\right)$ * $\operatorname{MAX}\left(u_{1}^{2} ;\right.$ REFMIN $)$ or						
5: $u_{2}=0$ (zero)						
0 will give acceleration on Torque limit. Set	0	32000	3000	S	0802	ACC_TIME
time in ms .	0	32000	3000	S	0802	ACC_TIME
0 will give deceleration on Torque limit. Set	0	32000	2000	S	0803	RET_TIME
\% reference of step 1 for first station. Set to 0						
then analogue reference is given, else the	0	100	10	D	0804	C1 ST1pc
\% reference of step 2 for first station.	0	100	25	D	0805	C1_ST2pc
\% reference of step 3 for first station.	0	100	50	D	0806	C1_ST3pc
\% reference of step 4 for first station. NB B There is a DI STEP100\% fixed to 100%.	0	100	50	D	0807	C1_ST4pc
Minimum allowed reference for first station.	0	100	0	D	0808	C1REFMIN
direction signals A and B or the Zero Position	0	1	0	D	0809	AUT1_DIR
signals to become effective.						
\% reference of step 1 for second station. Set						
to 0 then analogue reference is given, else the	0	100	10	D	0810	C2_ST1pc
analogue reference						
\% reference of step 2 for second station.	0	100	25	D	0811	C2_ST2pc
\% reference of step 3 for second station.	0	100	50	D	0812	C2_ST3pc
\% reference of step 4 for second station. NB!	0	100	50	D	0813	C2_ST4pc
There is a fixed DI STEP100\%.						
Minimum allowed reference for second station.	0	100	0	D	0814	C2REFMIN
(for second operation station), analogue						
reference inputs will not need the direction						
signals A and B or the Zero Position signals	0	1	0	D	0815	AUT2_DIR
to become effective.						
The slow speed from PRELIM switch to final						
limit switch. As a percentage of the						
synchronous speed. Set between value of parameter 06.01 ZER SPpc and 50\%.	0	50	10	D	0816	END_SPpc
Normal 10\%						
If by any reason the full position of the master						
switch should give another value than full speed, this parameter should be used.						
Example: Setting 75 will limit the max. speed to 75% of the synchronous for both step and						
potentiometer master switch. If the step	0	100	100	S	0817	
master switch has the steps $12 \%, 30 \%$ and						NREF_RED
$9 \%, 22,5 \%, 45 \%$ and 75% for the four notches given a setting 75% of this						
around zero then it is considered to not have been intentionally moved.	0	200	2,0	X	0820	DEADZONE
Reference can be zero until the brake is						
assumed to has started its opening. $0=$ No action of function						
$0=$ No action of function$1=$ Keeps zero reference until time 08.24 is					0821	REF_DELA
3 = Keeps zero reference until brake						
indicates OPEN, however never longer than						
time 08.24						

Description Speed reference for fastest notch of controller. Use normal setting 100%, which will result in as fast as possible. MIN	MAX	NORM	SET	IDENTITY	English text	
Time, corresponding to opening time of the brake, then the speed reference is kept at zero. See parameter 0821.	0	200	100	X	0822	STP100pc
Used in manual operation of travel motions: If the driver pulls the lever to the opposite side than the actual motion, the retardation ramp time is reduced by the percent value given with parameter 08.27	0	1500	150	S	0824	DELA_TIM

Description Speed reference from the selected step control master switch, before the ramp function. Speed reference from whichever origin as Master Switch, Computer or Master-Follower, after the ramp function. Continuous speed reference measured after the reference value former set by the parameter RAMP_TYP, 08.01. Operation station no. 2 selected$\%$	$\%$	0850	PRERAREF
(mainly) master switch in direction A	Bool	0851	N_REF
(mainly) master switch in direction B	Bool	0853	STAT2_S

ASTAT ${ }^{\circledR}$

Description Switching to super-synchronous braking is made in lowering mode. 0: is not effective. 1: is effective only in direction B (lowering for hoists). 2: is effective only in direction A. 3: is effective in both directions.	0	3	MAX	NORM	SET	IDENTITY
Value in percent of the motors synchronous speed for switching to super-synchronous braking.	50	100	85	D		
The regulation will be torque, not speed control. The torque reference is coming from master switch, Al or computer. Gain is set with parameters 11.15 and 11.16. If DARA 1000 or DARA 1010 is used, parameter 05.02, this parameter 09.10 has no influence.	0	1	0	D	0908	SUP_SYNC
Increased action of the Speed controller						
Integral part at 10\% speed and below. The						
value entered is relative to 09.02. It can be						
dangerous to use this parameter to reduce						
the Integral gain at low speed.						

ASTAT

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Increased action of the Speed controller Proportional part at 10\% speed and below. The value entered is relative to 09.03 .	-100	400	50	S	0916	KP_ADD10
Increased action of the Speed controller Proportional part at 25% speed reference The value entered is relative to 09.03 .	-100	400	25	S	0917	KP_ADD25
Increased action of the Speed controller Proportional part at 50% speed reference. The value entered is relative to 09.03.	-100	400	10	S	0918	KP_ADD50
Increased action of the Speed controller Proportional part at full speed reference. The value entered is relative to 09.03 .	-100	400	0	S	0919	KP_ADD99
Then Torque control is used in stead of speed control, the AI torque reference can be scaled with parameter 09.10. 100% corresponds to $+10 \mathrm{~V}=+100 \%$, 400% corresponds to $+10 \mathrm{~V}=+400 \%$.	100	400	100	D	0924	TQRNR_SC
Set to 1 to get independent tuning of the speed regulators P- and I-parts. Setting 1 is recommended.	0	1	0	D	0926	NEW_NREG
Above this reference the optimisation function for full speed can be active, and in principle the motor is DOL. Do not set lower than 85% for rotor feedback. If set to at least 101%, the speed control is always active. 200\% for Electrical shaft and similar applications.	0	200	85	X	0927	NREF_LEV
High reference to ramp generator will be to a value of ($100 \%+09.31$) when weight is less than 14.04 AND direction of motion is down AND speed reference is down AND value of speed reference larger than 50% AND supersynchronous lowering is not active during a lowering. See Load functions	0	70	55	D	0931	ADD_PLUG
The reference to the ramp generator will be limited to a value of ($100 \%-09.32$) when Weight less than 14.25 unless FREE_HOK is true. The Speed limitation is made before the ramp function AND only in positive direction reference AND FREE_HOK = 0 See Load functions	0	100	65	D	0932	REDSLACK
This parameter is active only when speed feedback is made with rotor voltage frequency.						
For a time, defined as 09.34 ms , after exit from super-synchronous lowering, the current will be forced to 09.33% of the historical current that was measured for the supersynchronous lowering phase.	0	400	280		0933	REV_CUFA
This time starts when Super Synchronous lowering ends. If there is rotor freq. feedback, during this time 09.34 the speed control is replaced by plug braking with parameter 09.33 x the lowering current in Super Synchronous mode.	0	500	250		0934	CURRTIME
For most motions the behaviour of the drive is better if the Integral gain is higher during speed changing than in steady state. By setting this parameter larger than 0 the Integral gain will be reduced during steady speed compared to during change. Leave as default $=50 \%$ for regular applications. For demanding applications start with $09.35=$ 80% and tune 09.02 as much as possible. After that, reduce 09.35 as much as possible.	0	100	50	S	0935	KI_RD_SS

Description	MIN	MAX	NORM	SET	IDENTITY	English text
For most motions the behaviour of the drive isbetter if the Proportional gain is higher duringspeed changing than in steady state. Bysetting this parameter larger than 0 the gainwill be reduced during steady speedcompared to during change.Leave as default = 50\% for regularapplications. For demanding applicationsstart with 09.40 = 65\% and tune 09.03 asmuch as possible. After that, reduce 09.40 asmuch as possible.	0	100	50	S	0940	KP_RD_SS

Description	Unit	IDENTITY	English text
Speed error $=$ In-signal to speed regulator	$\%$	0950	SPEEDERR

Description	MIN	MA	NORM	SET	ENTIT	English text
Overspeed supervision of hoists. 1.. 3. 1: DI requires high input. 2: Pulse frequency higher than allowed on DI. 3: Speed measurement based; trips at 125% CTR of the synchronous speed.	1	3	1	D	1001	OSP_TYPE
Overspeed pulse frequency on DI. 1 .. 75^{CTR}. Normal 1. Unit: Hz.	1	75	1	D	1002	OSP_FREQ
Allowed error in speed as percent of the reference in speed controlled mode. If the speed reference is low, a speed error of parameter 10.13 percent is allowed. Trip is delayed by time 10.19. Fault code is 65 .	0	100	30	x	1011	SMERRTOL
Open control ($=$ full speed hoisting or travelling) and Super-synchronous braking (= full speed lowering) are not speed controlled modes.						
The level that defines that there is some life at all in the tachometer. The minimum of this level is determined by discrimination of noise as an active tachometer input.	0	200	0,5	X	1012	FEEDBLEV
At this level, set a slightly less than Step 1, a feedback is requested from tachometer or encoder. Any feedback is defined by a speed feedback value larger than 10.12, typically $0,5 \%$ of full speed. Trip is delayed by time 10.15. Fault codes are 89 or 66.	0	200	8	X	1013	REFLEV
The Fault indications 89 and 66 has higher priority than Fault 65. Rotor feedback is checked in another way, and gives Fault code 37.						
If parameter $10.01=3$, the motion will trip at absolute measured speed level. This level is set with 10.14.	0	200	125	x	1014	OVSPLEV
Self adjusting to a higher value in case of High Speed Down - function is used. Do not adjust 10.14 of this reason.						OVSPLEV
Time that no feedback at all is accepted. If this trip comes at start the most common reason is a slow lifting brake. Use the function to delay the reference until the brake has lifted, see Section 4.8 Speed reference, before that parameter 10.15 is set longer. Brakes will degenerate by age and be slower in action, so the delayed reference shall have some margin when starting up a new crane.	0	1500	500	S	1015	FEEDB_T
Time that a speed deviation of 10.11% of speed reference is accepted.						
Can be carefully increased if Speed deviation Fault is generated although the drive system is without any error	0	2500	1000	S	1019	SP_DEV_T
Difference in percent between actual value and reference in torque control when the torque controlled is considered to have failed.	0	200	0	X	1020	TQFLTLEV
Margin as \% of the set retardation time added to the set retardation time, in which the motion is allowed to reverse-current ("plug") brake.	0	200	100	D	1021	RTIME_SC
Set 1 to turn off the Thyristor bridge supervision for motions that needs long time reverse-current braking. The supervision is not active lowering with a hoist (no need to set to 1!)	0	1	0	D	1022	JIB_TRAV

ASTAT ${ }^{\text {® }}$
rel. AST10_04
10_2 Speed supervision

ASTAT ${ }^{\text {© }}$

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Current limit in \% of rated current of the motor	100	400	400	D	1101	LIM_INpc
Gain of current regulator. The current regulator is working with only integral gain. The value can be modified after careful testing. Travel motions can be better with reduced value of this parameter and higher speed regulator gain.	0,100	32,000	10,000	S	1103	US_KI1
The value 20 degree corresponds to that the firing pulses are allowed to start so early in the electrical period, that the motor gets full line voltage. This parameter shall only be changed for test purpose.	20	360	20	X	1106	ALPHAMIN
No reason to change from 9 Hertz except for test purpose	0	9	9	X	1107	FREQDEV
Controls the systems dynamics. Typical setting in some situations: Good mechanics+tachometer allows 1,00 Average mechanics+tachometer or good mechanics+rotor feedback allows 1,15 Average/bad mechanics+rotor feedback or Bad mechanics+tachometer allows 1,30	0,300	2,560	1,150	X	1110	ISCALVAL
Proportional gain of Torque regulator. Only applicable for DARA 1001 with torque control, i. e. parameter $09.10=1$	0,000	4,000	0,025	X	1115	PRP1_T
Integral gain of Torque regulator. Only applicable for DARA 1001 with torque control, i. e. parameter $09.10=1$	0,000	128,000	0,500	X	1116	INT1_T
Current limit for elimination of sway of travel motions by electrical braking this this current during the time defined by parameter 06.06.	100	400	D	D	1128	RED_INpc
Rotor contactor K1 does not pull unless the line current reaches this level, K2 does not pull unless the current reaches this level + 10%, K3 does not pull unless the current reaches this level $+20 \%$. Only active in the Normal rotor contactor mode.	0\%	400\%	50\%	X	1136	IS_NO_LO
If a slow breaking rotor contactor is used, ASTAT can still perform the breaking with no current. The selection of a slow contactor will give a longer time to change torque direction. Try to use the contactors listed in the Manual, chapter 4.12!	0	250	20	D	1139	CON_OP_T

| Description | Unit | IDENTITY | English text |
| :--- | :---: | :---: | :--- | :--- |
| Torque reference (Analog output No. 2) | $\%$ | 1150 | TORQ_REF |
| Actual motor torque in \% of rated torque | $\%$ | 1151 | TACT |
| Current reference in \% rated current of the connected motors. | $\%$ | 1152 | IS_REF |
| Actual stator current in \% of motor rated current of the connected
 motors. (Analog output No. 1) | $\%$ | 1153 | ISACT |
| Thyristor phase (firing) angle | Degree | 1155 | ALPHA |
| Actual motor voltage measured on ASTAT motor connection terminals | V | 1157 | VMOT_AV |
| Frequency measurement fault. 1: Fault | Bool | 1161 | FREQFLT |
| Phase sequence fault; 1: Fault | Bool | 1162 | PHSEQFLT |
| Synchronisation with line voltage; 1: synch. OK, 0: synch. failed. | Bool | 1163 | SYNC_OK |
| One of the thyristor bridges is active. 1: active, 0: not active | Bool | 1172 | BR_ACT |
| Active thyristor bridge for motoring in direction A. 1: active, 0: not active | Bool | 1173 | BR_FWD |
| Active thyristor bridge for motoring in direction B. 1: active, 0: not active | Bool | 1174 | BR_REV |
| Torque error = In-signal to torque regulator | $\%$ | 1177 | TORQ_ERR |

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Logical parameter 0..1. Normal 1. If set to 1, K3 will close when the speed is faster than the set speed by parameter 09.09. If set to 0 , K2 will close when the speed is faster than set speed by parameter 09.09. Applicable for super-synchronous braking. Set 1 for hoists with super-synchronous braking there the contactor K3 is installed, otherwise 0 .	0	1	0	D	1207	SUP_K3_1
$12.08=1$: Resistor step 4 is used in the hoisting at Step 1 at no speed change. Typically used for tilting of ladles in the hot metal industry. Only used for cranes with step master switch, not for analog reference.	0	1	1	D	1208	HI_RES_A
A value in \% that is added to the torque ability of the actual rotor resistance and is subtracted from all other possible rotor resistances to prevent too frequent switching of rotor contactor. Only active in Normal mode	0	100	5	D	1209	ANTICLAP
Setting point for operation in speed mode $(12.30=1)$ for contactor K2. Set to around 50% with operation with only K2 and no K3. In Normal (12.30=0) the contactors switch for best thermal motor use. In Speed mode $(12.30=1) \mathrm{K} 2$ is controlled with the speed level 12.20 (hyst. 12.22) and K3 is controlled with the speed level 12.21 (hyst. 12.23), K1 is always closed in Dir. A.	0\%	100\%	33\%	D(S)	1220	SW_K2
Setting point for operation in speed mode $(12.30=1)$ for contactor K3 In Normal (12.30=0) the contactors switch for best thermal motor use. In Speed mode $(12.30=1) \mathrm{K} 2$ is controlled with the speed level 12.20 (hyst. 12.22) and K3 is controlled with the speed level 12.21 (hyst. 12.23), K1 is always closed in Dir. A.	0\%	100\%	70\%	D(S)	1221	SW_K3
Hysteresis for contactor K2 in speed mode ($12.30=1$). In Normal ($12.30=0$) the contactors switch for best thermal motor use. In Speed mode $(12.30=1)$ K2 is controlled with the speed level 12.20 (hyst. 12.22) and K3 is controlled with the speed level 12.21 (hyst. 12.23), K1 is always closed in Dir. A.	0\%	10\%	4\%	D(S)	1222	HIST_K2
Hysteresis for contactor K3 in speed mode ($12.30=1$). In Normal (12.30=0) the contactors switch for best thermal motor use. In Speed mode $(12.30=1) \mathrm{K} 2$ is controlled with the speed level 12.20 (hyst. 12.22) and K3 is controlled with the speed level 12.21 (hyst. 12.23), K1 is always closed in Dir. A.	0\%	10\%	4\%	D(S)	1223	HIST_K2
If 0 , Rotor contactor K 0 will never pull-in	0	1	1	X	1224	USE_K0
If 0, Rotor contactor K1 will never pull-in	0	1	1	X	1225	USE_K1
If 0, Rotor contactor K2 will never pull-in	0	1	1	X	1226	USE_K2
If 0, Rotor contactor K3 will never pull-in	0	1	1	X	1227	USE_K3
Filter time (ms) for actual speed being used for switching point calculations of rotor contactors.	0	32767	200	X	1228	NACT_FIL
If a slow making rotor contactor is used, ASTAT will delay the breaking of "previous" contactor. A slow making contactor gives short periods of torque weakness. Try to use the contactors listed in the Manual, chapter 4.12!	0	32767	80	D	1229	CON_CL_T

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Value 0: Normal automatic dynamic switch point calculation. For 1, Speed based, use the Special View and modify also 12.07 and 12.20-24. In Normal (12.30=0) the contactors switch for best thermal motor use. In Speed mode $(12.30=1) \mathrm{K} 2$ is controlled with the speed level 12.20 (hyst. 12.22) and K3 is controlled with the speed level 12.21 (hyst. 12.23), K1 is always closed in Dir. A.						
		1	0	S	1230	RCHA_MAN

Description	Unit	IDENTITY English text	

ASTAT
 that control the thyristor fan shall be used. $\mathbf{0}$: Extended lowering contactor. 1: Cable reel used. 2: Thyristor fan(s) can be temperature controlled.

MIN	MAX	NORM	SET	IDENTITY	English text
0	2	2	D	1301	SEL_DO_1

Description	Unit	IDENTITY English text	

Description 0:not used, 1:DI in Direction A , 2:DI in Direction B, 31:Al in Direction A, 32:Al in	0	MIN	MAX	NORM	SET	IDENTITY
Direction B.						

Description	MIN	MAX	NORM	SET	IDENTITY	English text
32767 Weight units. Parameter to enter 0 ..						
32767. Same unit must be used for parameters 14.09, 14.10, 14.24, 14.25. 20						
mA or 10 V from load cell must not generate						
200 t hoist with $1 / 16$ of the load by a load cell	0	32767	32767	D	1425	NOM_LOAD
which gives $10 \mathrm{~V}=20 \mathrm{t}$. Say that $10 \mathrm{~V}=16 \mathrm{x}$						
$20=320$ t weight $=320000 \mathrm{~kg}$. As						
$320000>32767$ we let 1 WEIGHT UNIT be 10						
kg . If the load cell had given $10 \mathrm{~V}=25 \mathrm{t}$ we had chosen 1 WEIGHT UNIT be 100 kg .						
store the signal level 14.21 for load value of parameter 14.09.	0	1	0	X	1426	SETX1VAL
Change triggering parameter from 0 to 1 to store the signal level 14.22 for load value of parameter 14.10. 0 1 0 X 1427 SETX2VAL						
Enable parameter for function Cycle Time 0 1 0 D 1428 PERM PLG						
Enable parameter for Slack Rope Protection 0 1 0 D 1429						
Hoisting.	0	1	0	D	1429	PERM_RED
and/or comparison of weight signals from two load cell or two hoists. The sum level is set						
with parameter 14.24. Requires that the two	0	1	0	D	1430	TWIN_OVL
ASTAT are connected together by DATX 110 AO 2-AI 6.						
Enable parameter for function comparison of						
weight signals from two load cell or two hoists. If the difference in load cell						
measurement is larger than 30% of one load						
and overload LED for both hoists are lit up.						
Requires in addition that 14.30 is set to 1.						
Requires that both ASTAT are connected together by DATX 110 AO 2 - AI 6.						
Detection of a slack rope will have influence						
on the lowering . 0 :not used, 1:Stopping the	0		32767	D	1501	SLACK RP
lowering, 2:Reducing lowering speed to	0	32767	32767	D	1501	SLACK_RP
END_SPpc.						

Description	Unit	IDENTITY	English text
Load in hook	Units	1450	HOOKLOAD
Load in $\%$ of rated load	$\%$	1452	TLOAD_PC

ASTAT

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Set 1 to catch the Synchronisation position.	0	1	0	X	1601	SYNC_ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set then parameter HHHX_ACT is set to 1 .	-...	+...		X	1602 1603	$\begin{aligned} & \text { HHHX_POS } \\ & \text { HHHX_LOW } \end{aligned}$
Set 1 to catch the HHH position.	0	1	0	X	1604	HHHX_ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set then parameter HHXX_ACT is set to 1 .	-...	+...		X	1605 1606	$\begin{aligned} & \text { HHXX_POS } \\ & \text { HHXX_LOW } \end{aligned}$
Set 1 to catch the HH position.	0	1	0	X	1607	HHXX ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set then parameter HXXX_ACT is set to 1 . Difference from the current position counter to SYNC_POS set by the system. This value is also set with parameter as others!	-	+...		X	1608 1609	HXXX_POS HXXX LOW
Set 1 to catch the H position.	0	1	0	X	1610	HXXX_ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set by the then parameter LXXX_ACT is set to 1 . difference from the current position counter to SYNC_POS set by the system. This value is also set with parameter as others !	-..	+...		X	1611 1612	LXXX_POS LXXX_LOW
Set 1 to catch the L position.	0	1	0	X	1613	LXXX_ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set then parameter LLXX_ACT is set to $\overline{1}$.	-...	+...		X	1614 1615	$\begin{aligned} & \text { LLXX_POS } \\ & \text { LLXX_LOW } \end{aligned}$
Set 1 to catch the LL position.	0	1	0	X	1616	LLXX_ACT
Difference from the current position (upper and lower 2 byte) counter to SYNC_POS set then parameter LLLX_ACT is set to $\overline{1}$.	-...	+...		X	1617 1618	$\begin{aligned} & \text { LLLX_POS } \\ & \text { LLLX_LOW } \end{aligned}$
Set 1 to catch the LLL position.	0	1	0	X	1619	LLLX_ACT

Description	Unit	IDENTITY	English text
Stop ordered in direction A. Value $=1:$ No restriction	Bool	1651	A_STOP
Slow down ordered in direction A. Value $=1:$ No restriction	Bool	1652	A_SLOW
Stop ordered in direction B. Value $=1:$ No restriction	Bool	1653	B_STOP
Slow down ordered in direction B. Value $=1:$ No restriction	Bool	1654	B_SLOW

$$
\frac{<05.04>}{\text { L_SW_TYP }}=2
$$

Description	MIN	MAX	NORM	SET	IDENTITY	English text
For some (small) motors it is needed to let						
the motor build up the rotor voltage before it is						
acceptable for rotor frequency feedback. The need of a time longer than 0 is noted by a						
false interpretation of low speed as zero	0	1000	0	S	1727	MAGN_DEL
speed, and the motion can make a single jerk before it is stable control mode. 0 ... 1	0	1000	0	S	172	MAGN_DEL
second. Normal $0 \mathrm{~s}=0 \mathrm{~ms}$. Set time in ms . If needed, a value around 500 ms can be tested.						

Description	Unit	IDENTITY	English text
Actual rotor frequency	Hz	1750	ROTFREQ
Speed feedback from rotor frequency estimation	$\%$	1751	NFEEDBRF

Description	MIN	MAX	NORM	SET	IDENTITY	English text

Description	MIN	MAX	NORM	SET	IDENTITY	English text

Description	Unit		IDENTITY
English text			
Actual position. 16 most significant bits.	1	1950	POSACT_H
Actual position. 16 least significant bits.	1	1951	POSACT_L

Description	MIN	MAX	NORM	SET	IDENTITY	English text
Definition of the role of the ASTAT in a Master-Follower connection. 0: No Master-Follower connection 1: Master in Master-Follower connection 2: Slave in Master-Follower connection	0	4	0		D	2001
The part, in percent, of the position difference between the two motions of the Master- Follower that the Follower will compensate as:				MF_TYPE		
Follower Speed Reference =	0	100	0		X	2002
Master Speed reference (1+((MF SCAL /100)Difference))			MF_SCAL			
Part in \% of one of the two identical motors rated torque that shall be the difference in torque in torque follower mode. For positive sign the Follower is weaker	-100	100	0		X	2003
The correction signal can be applied more softly by using a ramp function from actual to requested value. In most cases this ramp is not used, and by setting MF_RAMP to 0, there is no influence of the ramp. A value less than values of parameters 08.02 and 08.03 can give better performance when switching between sub modes MF1 - MF4		0	32000	0	TQ_RATIO	

Description	Unit	IDENTITY	English text
The correction speed reference given to the Follower when in Follower mode.	$\%$	2050	N_CORR

ASTAT

ASTAT ${ }^{\oplus}$

Description O= Accept that uncontrolled stops can be reset with normal Crane On push button. $1=$ Require that electrical maintenance shall reset the uncontrolled stop by switching control power off-on.	0	1	MIN	NORM	SET	IDENTITY
O= Let DO 7 be high for any Fault. $1=$ Only faults presented on the Cabin I/O LED-display.	0	1	0	D	2203	PT_FLT_S

Description	Unit	IDENTITY	English text
PHASE SEQUENCE WRONG or FREQUENCY OUT OF RANGE		2101	PS_FAULT
PHASE L1 MISSING		2102	L1_MISS
PHASE L2 MISSING		2103	L2_MISS
PHASE L3 MISSING		2104	L3_MISS
LINE VOLTAGE L1 < Set level		2105	L1_FAULT
LINE VOLTAGE L2 < Set level		2106	L2_FAULT
LINE VOLTAGE L3 < Set level		2107	L3_FAULT
DAPC 100 ERROR		2131	PC100_F
DATX 110 NOT FOUND		2132	TX110_F
DATX 120:1 NOT FOUND		2133	TX121_F
DATX 120:2 NOT FOUND		2134	TX122_F
DATX 120:3 NOT FOUND		2135	TX123_F
MASTER-FOLLOWER ERROR		2136	MF_FLT
DATX 130 NOT FOUND		2137	TX_130F
110 V DC TOO LOW		2143	LOW_110V
110 V DC EARTH FAULT		2144	EFLT110V
UNBALANCE; PARALLEL BRIDGES		2146	BR_ASYM
ERROR IN THYRISTOR TEMPERATURE MEASUREMENT		2147	TEMP ERR
CRANE UNCONTROLLED STOPPED		2148	EM_STOPD
Mismatch of reference polarity and direction signals of joystick		2150	DIR_CODE
Manual operation: JOYSTICK NOT IN NEUTRAL SWITCHING WHEN SHARED MOTION WAS SELECTED / Computer operation: REMOTE OPERATION ABNORMALLY ENDED. MASTER SWITCH OUT OF ZERO or COMMUNICATION BREAK DOWN		2151	ERR_CODE
PTC TRIP no. 1		2152	PTC1TRIP
PTC TRIP no. 2		2153	PTC2TRIP
PTC TRIP no. 3		2154	PTC3TRIP
PTC TRIP no. 4		2155	PTC4TRIP
BRAKE NO ACK. no. 1		2157	BACK1FLT
BRAKE NO ACK. no. 2		2158	BACK2FLT
BRAKE NO ACK. no. 3		2159	BACK3FLT
BRAKE NO ACK. no. 4		2160	BACK4FLT
CABLE RELAY no. 1		2161	CBR1_FLT
CABLE RELAY no. 2		2162	CBR2_FLT
CABLE RELAY no. 3		2163	CBR3_FLT
CABLE RELAY no. 4		2164	CBR4_FLT
SPEED DEVIATION		2165	SPMEAS_F
PULSE TRANSMITTER FAULT		2166	PT_FAULT
ROTOR FREQ. MEAS FAULT no. 1		2167	RFMEAS1_F
ROTOR FREQ. MEAS FAULT no. 2		2168	RFMEAS2_F
ROTOR FREQ. MEAS FAULT no. 3		2169	RFMEAS3_F
ROTOR FREQ. MEAS FAULT no. 4		2170	RFMEAS4_F
TORQUE FAULT		2171	TO_FAULT
OVERLOAD, DI		2172	OVL_DI
OVERLOAD, AI		2173	OVL_AI
OVERSPEED, DI		2175	OSP_DI
OVERSPEED, CALCULATED		2176	OSP_CALC
OVERTEMP. THYRISTORS		2177	OH_STACK
SLACK ROPE; SLOW DOWN		2178	SLRPSLOW
SLACK ROPE; STOP		2179	SLRPSTOP
NOT POSSIBLE LIMIT SWITCH VALUES		2180	LIMSWFLT

Description	Unit	IDENTITY	English text
EARTH FAULT ROTOR no.1		2181	ERTROT1_F
EARTH FAULT ROTOR no.2		2182	ERTROT2_F
EARTH FAULT ROTOR no.3		2183	ERTROT3_F
EARTH FAULT ROTOR no.4		2184	ERTROT4_F
UNSYMMETRICAL ROTOR no.1		2185	ASYMROT1
UNSYMMETRICAL ROTOR no.2		2186	ASYMROT2
UNSYMMETRICAL ROTOR no.3	2187	ASYMROT3	
UNSYMMETRICAL ROTOR no.4		2188	ASYMROT4
TACHOMETER FAULT		2189	TG_FAULT

ASTAT ${ }^{\boldsymbol{*}}$ re. Astio os
21_2 General and faults

AStat ${ }^{\circledR}$

