
ABB Motion control products 1
new.abb.com/motion

NextMove controllers are usually programmed using the
MintMT programming language.

MintMT allows a user-friendly interface to the controller
allowing the programming of simple motion control
programs for commissioning machines right up to complex
programs performing motion and IO synchronization for a
complete machine.

For the control of a complete machine, there may be a
small number of applications where MintMT does not
provide sufficiently high execution speed or where some
customization is necessary. In these situations an
embedded application is ideal.

Introduction
Distributed with all NextMove controllers are the Embedded Developer Libraries. These are a collection of run-time libraries for
the NextMove controller called the Mint Motion Library (MML). These libraries support all the function calls made by MintMT
and can be used along with the Texas TMS320C31 cross compiler to create embedded applications with all the functionality of
a MintMT program.

All embedded applications must be written in the ‘C’ programming language and compiled using the TI1 compiler. Examples of
embedded applications are provided with the Embedded Developer Libraries. These contain build files and the memory map for
the controller and can be used as a template for developing an embedded application.

An embedded application replaces MintMT on the controller, however the ICM communication layer is still supported, this
means that both the Mint Integrated Development Environment (WorkBench v5) and function calls via the ActiveX control will
still function. Workbench v5 can therefore be used as a debugging tool when developing the application and a PC-based
operator interface can be implemented if required.

Motion Control Products

Application note
Embedded programming

AN00102
Rev C (EN)

Application note Embedded programming AN00102

ABB Motion control products 2
new.abb.com/motion

NextMove Architecture
Controller running MintMT Controller running an Embedded Application

As MintMT is not required when writing an embedded application the available memory for embedded applications is greater
than that available by MintMT programs.

Converting from Mint MT to Embedded
The API calling convention of all MML function calls remains consistent within MintMT. This allows MintMT programs to be
converted to ‘C’ relatively easily.

For example:

MintMT Code

NODETYPE(2,14) = _ntKEYPAD
PAUSE NODELIVE(2,14)

MASTERSOURCE(0) = _msAUXENCODER
FOLLOWMODE(0) = _fmNO_RAMP
FOLLOW(0) = 2

DAC(2) = 0
OUTX(0) = 1
ADCMODE(4) = _acBIPOLAR

‘C’ Code

SetNodeType(2,14,ntKEYPAD);
Do
{
 live=GetNodeLive(14);
}
While (!live);

SetMasterSource(0,msAUXENCODER);
SetFollowMode(0,fmNO_RAMP);
SetFollow(0,2.00);

SetDAC(2,0);
SetOutX(0,1);
SetADCMode(4,acBIPOLAR);

This means that all axes can be initially configured and the application prototyped using Mint and WorkBench v5. This startup
code can then be converted from Mint to ‘C’ for use in an embedded application. As there is no change in functionality due to
the common API there is a high confidence of error free code.

Hardware

Mint Motion Library

Motion Profiler

MintMT

Hardware

Mint Motion Library

Motion Profiler

Embedded Application

Application note Embedded Programming AN00102

ABB Motion control products 3
new.abb.com/motion

Execution Speed Up
As embedded applications are written in C rather than Mint they are not subject to the overhead of the MintMT virtual machine.
All non-MML calls are compiled, by the native C31 compiler, down to several instructions.

Within MintMT, performing an arithmetic operation on two variables may take 10’s of microseconds. Within an embedded
application this is executed in several instruction cycles giving a speed improvement of about 100-200 times.

The MML functions still have to execute the same embedded code, but the execution time for these is still improved due to the
removal of the MintMT virtual machine. MML functions will generally execute about 2-5 times faster than MintMT when using an
embedded application.

Open Architecture
As embedded applications are written in ‘C’, this allows certain sections of the MML core to be overwritten or customized. The
open architecture allows the servo loop and motion profiler for any/all axes to be modified. The use of a customised servo loop
or motion profiler does not prevent the use of the default servo loop or motion profiler.

Servo Loop
The servo loop is the position control loop that runs on all servo axes when they are enabled. It reads the current position of the
axis, compares it to a demand position and from the resulting difference (following error) uses a control law to generate a
demand (DAC) output to move the axis closer to the demand position. Open Architecture allows a new servo loop to be called in
place of the ABB servo loop if required.

By default the servo loop is executed every 1ms, although for tighter control is may be necessary to reduce the time between
servo loop execution.

There are three installable servo loop options, these are:

Pre Servo Loop This is called directly after the actual and demand positions have been calculated, but prior to the
point that the following error is calculated. This is designed to allow users to overload either the
actual position (read from the encoder) or the demand position (generated by the motion profiler).

Main Servo Loop This is called in place of the PIDVFA control law that is used to generate the DAC demand value.
This is designed to allow uses to write their own control law.

Post Servo Loop This is called directly before the DAC value is written to the hardware. This is designed to allow a
DAC filter to be implemented.

Embedded Application

Mint Motion Library

Servo Loop

Motion Profiler

User Application Code

Servo Loop

Motion
Profiler

Application note Embedded programming AN00102

ABB Motion control products 4
new.abb.com/motion

The following diagram represents the Servo Loop stages.

Customized servo loops are installed for specific axes. This means that some of the axes can use the default ABB servo loop
while others have a customized servo loop. Some may have a post-servo loop and others a pre-servo loop.

Motion Profiler
The motion profiler runs for each axis in turn and checks if a move type is loaded and triggered. If so it will call the specific
trajectory generation routine for that move type. Open Architecture allows new trajectory generation routines to be called by the
motion profiler. The trajectory generation routine generates a new demand position for one of more axes, this new position is
then used by the servo loop / stepper loop to generate an appropriate control output.

By default the motion profiler is executed every 2ms, although for tighter control it may be necessary to reduce the time between
execution.

Installing a new trajectory generator does not replace the existing routines such as homing or linear moves but is an addition to
them. A separate trajectory generator may be installed for each axis or multiple axes may use the same one. Alternatively a
single trajectory generator may generate a demand position for multiple axes.

The new move type must be triggered using the GO command; this allows synchronization with other axes performing motion.

Contact us
For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

© Copyright 2012 ABB. All rights reserved.
Specifications subject to change without notice.

Servo Loop

Read Encoders and Demand Position

Call Pre-Servo Loop if one exists

Call either ABB Servo Loop or the installed Main-Servo
Loop

Call Post-Servo Loop if one exists

Output DAC Value

