Overview

The 1394 System

The 1394 is a modular, multi-axis motion control and drive system family. Its unique design allows the 1394 to be used as an integrated motion controller and drive system (GMC) with Turbo or standard IMC ${ }^{\text {TM }}$ S Class Compact functionality, an integrated 9/440 CNC system, a 9/Series CNC digital interface drive system, a SERCOS servo drive system, or an analog servo drive system.

All 1394 systems provide direct line connection (transformerless) for 360 and 480 V three-phase input power, efficient IGBT power conversion, and slide-and-lock, module-to-module connection systems. Each system module can be configured with up to four axis modules, with each axis module interfacing to a motor. The 1394 provides significant panel space and interconnect savings.

Series Note

Series C system modules (catalog numbers 1394C-SJT $x x-x$) and axis modules (catalog numbers 1394C-AMxx and -AM $x x$-IH) include features not available on Series A and B modules (catalog numbers 1394-SJTxx-x and 1394-AM $x x$).

System Module Features:	Feature Availability	
	Series C	Series A and B
Connector (plug-in) input power termination	Yes	No
Cable Clamp (strain relief, shield bond)	Yes	No
EMI filter (24V input power, registration)	Yes	No
Smart Power (Soft Start, power monitor)	Yes	22 kW systems only

Axis Module Features:	Feature Availability	
	Series C	Series A and B
Cable Clamp (strain relief, shield bond)	Yes	No
EMI filter (motor brake and thermal circuit)	Yes	No

Series C system modules are interchangeable with Series A and B. Likewise, Series A, B, and C axis modules are interchangeable with each other.

Series C is recommended for all new applications. See the tables above for feature availability. For help in determining the series of your module(s), refer to the section Module Series Designator in the Preface.

1394 System Overview

GMC System

The 1394 GMC System provides all the functionality of the IMC S Class Compact Motion Controller and power conversion within the 1394 system module. Allen-Bradley offers two versions of the 1394 GMC system module (Standard GMC and GMC Turbo). Both systems are completely programmed and commissioned using GML ${ }^{\text {TM }}$ (Graphical Motion Control Language), offer Allen-Bradley DH485, RS-232, and RS-422 as standard communications, and have Remote I/O and AxisLink available as communication options.

The 1394x-SJTxx-C (Standard GMC) system supports four axis modules and provides four channels of auxiliary encoder input. The 1394C-SJTxx-L (Standard GMC) provides the same functionality of the $1394 x$-SJTxx-C, but supports only one axis module and provides two channels of auxiliary encoder input.

In addition, the 1394x-SJTxx-T (GMC Turbo) provides more GML application program memory and executes the programs faster. The $1394 x$-SJT x x-T offers 64 K of memory with a 32 -bit processor while the 1394x-SJTxx-C offers 32K of program memory with a 16 -bit processor. The 1394x-SJTxx-T also includes a direct, high speed link to the SLC $5 / 03^{\mathrm{TM}}, 5 / 04^{\mathrm{TM}}$, or $5 / 05^{\mathrm{TM}}$ that simplifies the programming required to transfer data between the $1394 x$-SJT $x x$-T and the SLC ${ }^{\text {TM }}$.

Figure 1.1
Two GMC Turbo Systems (1394x-SJTxx-T)

Figure 1.6
9/440 System

What is a 1394 System?
The 1394 system consists of the following components (catalog number appears in parenthesis):

- One System Module (1394x-SJTxx-x)
- One to four Axis Modules (1394x-AMxx-xx)
- One to four servo motors (1326Ax-B $x x x x$)
- One to four power and feedback cables

Also available are the DC Link Module (1394-DCLM) and Drive Interface Module (1394-DIM).

The:	Is used:
1394-DCLM	In addition to the axis module(s)
1394-DIM	In place of an axis module.

Axis modules are connected to system modules using slide-and-lock, module-to-module connections. For information on motors and cables, refer to the 1326AB 460V, Torque Plus Series, ACServo Motors Product Data (publication 1326A-2.9), 1326AS Series 460V, Low Inertia, Brushless Servo Motors Product Data (publication 1326A-2.10), and 1326 Cables for 460 V AC Servo Motors Product Data (publication 1326A-2.11).

In addition to the equipment shown above, you will need to supply the following:

- Three phase input contactor
- Three phase input fusing
- 24 V AC or DC logic power for system module and contactor enable (Analog Servo only)/DRIVEOK power (all modules)

Refer to Appendix A for information on these topics.
Note: An external shunt resistor kit (1394-SR10A) is available for 5 and 10 kW systems with regenerative loads that exceed the capacity of the internal 200W shunt resistor provided. Most 5 and 10 kW systems will not require a shunt resistor kit. All 22 kW 1394 based products require an external shunt module (1394-SR9Ax or 1394-SR36Ax). This includes both 1394 and 8520 catalog items.

System Modules

System modules, available with ratings of 5, 10 and 22 kW (at 460V), house the system control PCB and convert 360 to 480 VAC , threephase, $50 / 60 \mathrm{~Hz}$ input power to a $530-680 \mathrm{~V}$ DC link voltage. The 5 and 10 kW system modules have an internal shunt resistor with a 200 W continuous rating and a peak rating of $40,000 \mathrm{~W}$. The 22 kW system module requires an external shunt module.

Figure 1.7 1394 System module

Axis Modules

Axis modules, with continuous output currents (RMS) of 3.0, 4.5, 7.5 23.3 and 35.0 A , convert the DC power supplied by the system module to a variable AC voltage. You will require one axis module for every 1326Ax-Bxxxx servo motor you plan to run using the 1394. Choose each axis module based on the current requirements of the servo motor.

Figure 1.8
1394 Axis Module

External Shunt Module (used with 22 kW System)

Shunt modules with (rms) power output of $300,900,1800$ and 3600 W continuous, $160,000 \mathrm{~W}$ peak are available for use with the smart power 22 kW system module. The shunt module dissipates excess regenerative power from the Bulletin 1394 system. You must use one shunt module with each 22 kW smart power system module. Available in two sizes, each package contains an integral fuse and terminal block. The 3600 W package is available with a $115 / 230 \mathrm{~V}$ AC cooling fan. Choose your shunt module based on the shunt requirements of the 1326A x-Bxxxx servo motors you plan to run using the 1394.

Note: 5 and 10 kW system modules can use an optional 1400 W shunt module kit to dissipate excess regenerative energy (unpackaged components).

Figure 1.9
1394 External Shunt Module

1326AB Motors

This family of high-performance, medium inertia, ferrite, three-phase servo motors feature a specially designed housing that reduces motor length. They are available with continuous torque ratings of 2.3 to 53.0 N-m (20.7 to $469.0 \mathrm{lb}-\mathrm{in}$.). Refer to the 1326AB 460V, Torque Plus Series, AC Servo Motors Product Data (publication 1326A-2.9) for more information on features and options. IP65 protection rating is standard when used with the shaft oil seal kit. IP67 protection rating is available (specify -L in the catalog number, refer to Appendix D).

Figure 1.10 1326AB Motor

1326AS Motors

This family of high-performance servo motors feature neodymium-iron-boron permanent magnet rotors that provide low inertias, high accelerations and high peak torques. They are available with continuous torque ratings of 0.49 to $49.3 \mathrm{~N}-\mathrm{m}$ (4.33 to $436 \mathrm{lb}-\mathrm{in}$.). Refer to the 1326AS Series 460V, Low Inertia, Brushless Servo Motors Product Data (publication 1326A-2.10) for more information on features and options. IP65 protection rating is standard when used with the shaft oil seal.

Important: 1326AS-Bxxxx motors cannot be used with the 9/Series and 9/440 controllers.

Figure 1.11 1326AS Motor

1326AH Motors

This family of hazardous duty motors are UL recognized AC brushless servo motors. Construction of the motor is a totally enclosed non-ventilated (TENV) square frame design utilizing a permanent magnet rotor and a fixed stator winding. Rare earth magnets, long life ball bearings, and brushless construction also assures maximum performance. They are available with continuous torque ratings of 2.97 to $16.9 \mathrm{~N}-\mathrm{m}$ (26.3 to $149.8 \mathrm{lb}-\mathrm{in}$.). Refer to the 1326AH Hazardous Duty Motors Product Data (publication 1326AH-TD001B-US-P) for more information.

Figure 1.12
1326AH Motor

Drive Interface Module

The 1394-DIM (Drive Interface Module) provides four channels of analog output, four drive enable outputs, and four drive fault inputs. The 1394-DIM allows the $1394 x$-SJTxx-C, -T, or -L system module to be used to control any external drive with a $\pm 10 \mathrm{~V}$ velocity torque reference command and quadrature encoder output. Each 1394-DIM can support up to four drives. However, the maximum number of axes (1394-DIM controlled drives plus $1394 x$-AM $x x$ axis modules) cannot exceed four per 1394x-SJTxx-C or -T system module and one per 1394C-SJT $x x$-L system module. The 1394-DIM is not compatible with the 1394x-SJTxx-A system module.

Figure 1.13
Drive Interface Module

DC Link Module

The 1394-DCLM (DC Link Module) provides additional load leveling and energy storage (capacitance) for 1394 systems. This allows additional regenerative energy to be stored during the machine cycle, increasing system capacity, lowering cycle time, and avoiding resistive heat loss. The module can be used alone or two modules can be used to interconnect two 1394 systems using the DC Link cable.

Figure 1.14
DC Link Module

Standard Features of the 1394

The 1394 provides the following standard features:

- UL Listed and CUL Certified
- CE Marked

Control

- Supports Standard GMC (1394x-SJTxx-C and -L) and GMC Turbo, CNC Interface, SERCOS, and Analog Servo configurations with a standard array of hardware.
- Digitally-adjusted velocity and current loop compensation, which accommodates a wide range of system inertias.
- Two configurable analog test outputs that can be linked to critical system parameters for troubleshooting (GMC and Analog Servo system modules).
- All systems provide digital fault and diagnostic utilities (including a current monitor, thermal overload detection, and a feedback signal monitor).
- Status LEDs for system and axis modules.
- Status LEDs for motion board, Axislink, and RIO (GMC system only).
- Highly-integrated surface mount circuitry.
- Encoder signal output (A QUAD B) for encoder emulation (Analog Servo system modules only).
- DSP assisted processing.
- Smart Power control, available on all 22 kW system modules and 5 and 10 kW system modules (Series C or later), allows poweruse monitoring for process optimization.
- Smart Power system modules, available on all 22 kW system modules and 5 and 10 kW system modules (Series C or later), include active Soft Start inrush current limiting for DC link charging.
- Electrical Noise Protection included on GMC, GMC Turbo, SERCOS, and Analog Servo system modules (Series C or later) and axis modules (Series C or later).
- Improved grounding terminations on GMC, GMC Turbo, SERCOS, and Analog Servo system modules (Series C or later) and axis modules (Series C or later).

Note: To determine the series of your module, refer to Figure P. 1 in the Preface.

Power

- IGBT technology for efficient, quiet operation.
- Transient (MOV) voltage, phase loss, and ground fault protected input.
- An integral 200 W shunt resistor is available (5 and 10 kW only). An external 1400 W shunt kit is available (5 and 10 kW only). Other external shunt kits and modules from 300 to 3600 W continuous.
- Current ratings of $3.0,4.5$, and 7.5 A continuous, at $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ (inside cabinet) and 23.3 and 35 A continuous, at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ (with heat sinks out the back) with up to 300% motor ratings for high duty-cycle operation producing continuous torque ranges of 0.7 to $53.0 \mathrm{~N}-\mathrm{m}$ (6 to $469 \mathrm{lb}-\mathrm{in}$.).
- $324-528 \mathrm{~V} \mathrm{AC}$, three-phase, $50 / 60 \mathrm{~Hz}$ direct line operation.
- No isolation transformer or inductors are required (360/480V AC Hz direct line operation) for most applications.
- Advanced protective features, such as software-based current foldback, which provides overload tolerant operation and soft current limiting.

Integration

- Hinged system module front cover for easy access to control and power wiring.
- System and axis modules that can be quickly removed and easily interchanged for troubleshooting and diagnostics.
- Standard widths of 50 mm (1394x-AM03, -04 , and -07) and 75 mm (1394x-AM50-xx and -AM75-xx) axis modules are available.
- Mass termination plugs and reliable, contact-type, terminal blocks are used for easy installation and service.
- Plug interconnects for auxiliary, encoder input (GMC), encoder output and motor resolver input (all).
- Slide-and-lock, module-to-module connection, which eliminates bus bars and wiring harnesses.
- Advanced communications and I/O capabilities help integrate the 1394 to standard plant floor networks.

Appendix \mathbf{A}

Specifications

Chapter Objectives

System Specifications

Appendix A contains specifications and dimensions for the 1394 system and dimensions and operating characteristics for the $1326 \mathrm{AB} / \mathrm{AS}$ series servo motors. This appendix covers:

- System specifications
- Environmental specifications
- Power dissipation
- Communication specifications
- Dimensions
- Servo motor performance data

General 1394 specifications are provided below. Specifications are for reference only and are subject to change without notice.

Certification

The 1394 is certified for the following when the product or package is marked:

- UL listed (File E59272)
- CUL listed
- CE marked for all applicable directives

System Modules

The table below lists the specifications for system modules.

The:	For the 1394x-SJT05 ${ }^{1,2}$ is:	For the 1394x-SJT10 ${ }^{1,2}$ is:	For the 1394x-SJT22 ${ }^{1}$ is:
Rated AC input voltage	$\begin{aligned} & 324-528 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz} \\ & \text { Three phase } \end{aligned}$	$324-528 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ Three phase	$\begin{aligned} & 324-528 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz} \\ & \text { Three phase } \end{aligned}$
AC input current	6.5A	13.0A	28.6A
Peak inrush current ${ }^{4,5}$ (Series A and B) ${ }^{3}$	975A	1300A	697 A < $1 \mu \mathrm{~s}$
Peak inrush current ${ }^{4}$ (Series C)	$697 \mathrm{~A}<1 \mu \mathrm{~s}$	$697 \mathrm{~A}<1 \mu \mathrm{~s}$	$697 \mathrm{~A}<1 \mu \mathrm{~s}$
Line loss ride through	20 ms	20 ms	20 ms
Nominal bus output voltage	530/680V DC	530/680V DC	530/680V DC
Continuous power output	$4 / 5 \mathrm{~kW}$	8/10 kW	$17 / 22$ kW
Peak power output	28 kW	28 kW	136 kW
Efficiency	99\%	99\%	98\%
Number of Electronic Cam Profile Points	13,000 Master/slave	13,000 Master/slave	13,000 Master/slave
Weight (Series A and B)	$11 \mathrm{~kg}(24.25 \mathrm{lb})$	$11 \mathrm{~kg}(24.25 \mathrm{lb})$	$12.7 \mathrm{~kg}(28.0 \mathrm{lb})$
Weight (Series C)	$10.68 \mathrm{~kg}(23.5 \mathrm{lb})$	$10.68 \mathrm{~kg}(23.5 \mathrm{lb})$	$12.9 \mathrm{~kg}(28.5 \mathrm{lb})$
Continuous current output	7.36A	14.73 A	33.8A
Peak current output	15.0A	29.46A	200A
Capacitance (Series A and B)	$220 \mu \mathrm{~F}$	$330 \mu \mathrm{~F}$	$660 \mu \mathrm{~F}$
Capacitance (Series C)	$220 \mu \mathrm{~F}$	$345 \mu \mathrm{~F}$	$660 \mu \mathrm{~F}$
Inductance	$1000 \mu \mathrm{H}$	$750 \mu \mathrm{H}$	$500 \mu \mathrm{H}$
Internal shunt resistor	200W continuous, 40,000W peak (two second maximum on time)		No internal Shunt Resistor

${ }^{1}$ The Standard GMC and GMC Turbo system modules are identical except that the GMCTurbo ($1394 x$-SJTxx-T) offers a SLC backplane interface and 64K of memory with a 32-bit processor while the Standard GMC (1394x-SJTxx-C) offers 32K of program memory with a 16bit processor without the SLC interface.
${ }^{2}$ The Standard GMC (1394C-SJTxx-L) is functionally the same as the (1394x-SJTxx-C) except it supports one axis and provides two auxiliary encoder inputs.
${ }^{3}$ To determine the series of your module, refer to Figure P. 1 in the Preface.
${ }^{4} 5$ and 10 kW (Series C) system modules and all 22 kW system modules are limited to four contactor cycles per minute. 5 and 10 kW (Series A and B) system modules are limited to an average of four contactor cycles per hour.
${ }^{5}$ Peak inrush current for $=($ line voltage $\times 1.1 \times \sqrt{2}) \quad$ Where: $L=$ Inductance 5 and 10 kW systems (Series A and B)
$=\frac{(\text { line voltage } \times 1.1 \times \sqrt{2})}{\sqrt{\left(\frac{\text { Lsystem }}{(\text { Csystem }+ \text { Caxes })}\right)}}$
C = Capacitance

Axis Modules

The table below lists the specifications for the axis modules.

The:	For the 1394x-AM03 is:	For the 1394x-AM04 is:	For the 1394x-AM07 is:	For the 1394x-AM50 and 1394C-AM50-IH is:	For the 1394x-AM75 and 1394C-AM75-IH is:
Speed Regulation ${ }^{1}$	0 to 0.05% of base speed with 100% torque disturbance	0 to 0.05% of base speed with 100% torque disturbance	0 to 0.05% of base speed with 100% torque disturbance	0 to 0.05% of base speed with 100% torque disturbance	0 to 0.05% of base speed with 100% torque disturbance
Static Gain $(\mathrm{rms} \mathrm{A} / \mathrm{mV})^{1}$	1.28	2.6	4.9	22.8	22.8
Peak Current Limit Adjust	200\%	200\%	200\%	143\%	143\%
Modulation Frequency	$5 \mathrm{kHz} \pm 10 \%$				
Drift	$0.03 \mathrm{rpm} /$ degree C				
Nominal Input Voltage	530/680V DC				
Continuous Current (rms)	3.0A	4.5A	7.5A	23.3A	35.0A
Peak Current (rms - 1 second)	6.0A	9.0A	15.0A	33.2A	50.0A
Continuous Power Out 360/ 460 V nominal	1.6/2 kW	2.4/3 kW	4/5 kW	11.34/15.6 kW	17.8/23.8 kW
Efficiency	98\%	98\%	98\%	98\%	98\%
Weight	5 kg (11.02 lb)	5 kg (11.02 lb)	5 kg (11.02 lb)	$\begin{aligned} & 7 \mathrm{~kg}(15.44 \mathrm{lb})(-\mathrm{AM} 50) \\ & 6.73 \mathrm{~kg}(14.8 \mathrm{lb})(-\mathrm{AM} 50-\mathrm{IH}) \end{aligned}$	$\begin{aligned} & 7 \mathrm{~kg}(15.44 \mathrm{lb})(-\mathrm{AM} 75) \\ & 6.73 \mathrm{~kg}(14.8 \mathrm{lb})(-\mathrm{AM} 75-\mathrm{IH}) \end{aligned}$
Capacitance	$110 \mu \mathrm{~F}$	$110 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$	$465 \mu \mathrm{~F}$	$660 \mu \mathrm{~F}$

${ }^{1}$ When used with the controller in the 1394x-SJTxx system module.

Contact Ratings

The table below lists the contact ratings of the drive relay outputs.

The contact rating for the:	ls:
Drive OK (DROK)	$115 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC, 1 A inductive
Contactor Enable Relay	$115 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V}$ DC, 1 A inductive
Thermal switch	115 V AC/24V DC, 1 A inductive

DC Link Module

The table below lists the specifications for the DC Link Module.

The:	For the 1394-DCLM is:
Firmware version	5.0 or higher with 1394x-SJTxx-A systems 3.7 or higher with $1394 x-$ SJTxx-C-xx and -T-xx systems 3.9 or higher with 1394C-SJTxx-L-xx systems
Software	GML Commander, version 4.02 or higher
Input voltage	530/680V DC, single phase
Current	Continuous (rms) 32A, Peak (rms - 1 second) 200A
Capacitance	$990 \mu \mathrm{~F}$
Energy storage	7.36 joules based on a nominal 50V bus delta
Cables available (part numbers)	1394-CPDC-0015 and 1394-CPDC-0030
Cable lengths available	$1.5 \mathrm{~m}(4.92 \mathrm{ft})$ or $3 \mathrm{~m}(9.84 \mathrm{ft})$
Operating temperature	0° to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Relative humidity	5-95\%, non-condensing
Weight	4.8 kg (10.5 lbs)

Drive Interface Module

The table below lists the specifications for the Drive Interface Module.

The:	For the 1394-DIM is:
Firmware version	3.7 or higher with 1394x-SJTxx-C-xx and -T-xx systems 3.9 or higher with 1394C-SJTxx-L-xx systems
Software	GML Commander, version 4.01 or higher
Input voltage	$24 \mathrm{~V}, 50 \mathrm{kHz}$ provided by the 1394x-SJT-xx system module
Analog output information$(P x-1,2)$	
Voltage	0 to $\pm 10 \mathrm{~V}$ analog
Signal isolation	1500 V rms
Resolution	12 bits, 4.88 mV
Impedance	220 ohms
Offset	$\pm 80 \mathrm{mV}$ maximum, compensated to 0 through software setup
Drive OK	15 V DC @ 5 mA supplied by the DIM
Drive enable output	30V DC @ 1 A
Operating temperature	0° to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Relative humidity	5-95\%
Weight	$3 \mathrm{~kg}(6.6 \mathrm{lb})$

Filters

The table below shows the requirements for filters that you can use.

The:	For the SP-74102-006-01 is:	For the SP-74102-006-02 is:	For the SP-74102-006-03 is:
Frequency	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Voltage	460 V AC	460 V AC	460 V AC
Current	$23 \mathrm{~A} @ 50^{\circ} \mathrm{C}\left(73.4^{\circ} \mathrm{F}\right)$	$30 \mathrm{~A} @ 50^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$	$75 \mathrm{~A} \mathrm{@} 50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$
Operating Temperature	-25° to $85^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	-25° to $85^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	-25° to $85^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Vibration	$10-200 \mathrm{~Hz} \mathrm{@} 1.8 \mathrm{~g}$	$10-200 \mathrm{~Hz} \mathrm{@} 1.8 \mathrm{~g}$	$10-200 \mathrm{~Hz} \mathrm{@} 1.8 \mathrm{~g}$
Humidity	90%	90%	90%
Weight	$1.6 \mathrm{~kg}(4.16 \mathrm{lb})$	$2.7 \mathrm{~kg}(7.02 \mathrm{lb})$	$5.2 \mathrm{~kg}(13.52 \mathrm{lb})$
Power Loss	38 W	57 W	
Roxburgh Catalog No.	MIF323-GS	MIF330-GS	MIF375-GS

User-Supplied Contactor (M1)

The table below shows the requirements for the contactor that you must supply.

The contactor:		For the 1394-SJT05 and -SJT10 (Series A and B) is:	For the 1394C-SJT05 and -SJT10 (Series C) is:	For the 1394x-SJT22 is:
Rating		600 V AC, 43A ${ }^{1}$	600 V AC, 23A	600 V AC, 37A
Recommended types:	AC Coil Operation	Allen-Bradley 100-C43x10 ${ }^{2,3}$	Allen-Bradley 100-C23x10 ${ }^{2,3}$	Allen-Bradley 100-C37x10 ${ }^{2,3}$
	DC Coil Operation	Allen-Bradley 100-C43Zx10 ${ }^{2}$	Allen-Bradley 100-C23Zx10²	Allen-Bradley 100-C37Zx10 ${ }^{2}$

${ }^{1}$ Consider using a 60A contactor when the total capacitance of the axis modules is greater than $880 \mu \mathrm{~F}$.
${ }^{2} x$ indicates coil voltage.
${ }^{3} \mathrm{~A}$ surge suppressor is required.

User-Supplied Line Input Fusing

The table below shows the requirements for the input fusing that you must supply.

The Recommended type of fuse for:		Is:	Rating
1394-SJT05 systems	Series A and B	Bussmann FRS-R-20A or equivalent	600V AC, 20A
1394C-SJT05 systems	Series C	Bussmann KTK-R-20 or equivalent	600V AC, 20A
		Bussmann LPJ-SP 20 or equivalent	600 V AC, 20A
1394-SJT10 systems	Series A and B	Bussmann FRS-R-30A or equivalent	600 V AC, 30A
1394C-SJT10 systems	Series C	Bussmann KTK-R-30 or equivalent	600 V AC, 30A
		Bussmann LPJ-SP 30 or equivalent	600 V AC, 30A
1394x-SJT22 systems		Bussmann FRS-R-35 or equivalent	600 V AC, 35A
		Bussmann LPS-RK-SP 40 or equivalent	600 V AC, 40A
		Bussmann LPJ-SP 45 or equivalent	600 V AC, 45A

User-Supplied 24V Logic Input Power

The table below shows the requirements for the 24 V logic input power that you must supply.

24V logic input voltage	Frequency	Current ${ }^{1}$		Recommended Fuse
		If you have:	The current draw for usersupplied power supply must not exceed:	
19-28V AC RMS, single phase or	$50 / 60 \mathrm{~Hz}$	1 axis	3.5A	Bussmann MDA-15 or equivalent
		2 axis	4.4 A	
18.75-31.25V DC		3 axis	5.2A	
		4 axis	6.0A	

[^0]
Input Transformer for 24V Control Power

You can use any general purpose transformer with the following ratings.

The requirements for:	For a 480V system is:	For a 360V system is:
Input volt-amperes	200 to 259 VA	200 to 259 VA
Input voltage	480 V RMS	360 V RMS
Output voltage	24 V RMS	24 V RMS
Load regulation	2 to 5%	2 to 5%

If the input volt-amperes is more than 350 VA , adjust the load regulation to make the transformer leakage the same as or greater than the 250 VA transformer with 2% regulation.

User-Supplied 5V Auxiliary Encoder Power Supply

The table below shows the requirements for the 5 V encoder that you can supply. If you use an encoder that requires more than 5 V , you still need a 5 V power supply for the 1394 encoder board electronics at a rating of 0.325 A (applies to $1394 x$-SJTxx-C, -L , and -T systems only).

The:	For 5V logic input power must be:
Rating	$5 \mathrm{~V} D \mathrm{DC}+-5 \%$
Current	0.325 A plus the requirement of each encoder used. For
	example, if you use one encoder with a 0.2A
	requirement, the supply required is $0.525 \mathrm{~A}(0.325 \mathrm{~A}+$
	$0.2 \mathrm{~A}=0.525 \mathrm{~A})$

Circuit Breakers

While circuit breakers offer some convenience, there are limitations for their use. Circuit breakers do not handle high current inrush as well as fuses. The 1394 system needs to be protected by a device having a short circuit interrupt current rating of the service capacity provided or a maximum of $100,000 \mathrm{~A}$.

If an upstream circuit protection device is rated for the overload current and short circuit rating, a supplementary circuit protection device (such as the 1492) can be used as the only 1394 branch circuit protection device. The upstream fully rated device let-through must be less than or equal to the 10 kA interrupt rating of the 1492.

The wiring interconnection in Figure A. 1 and Figure A. 2 provide examples of the needed protection and follows UL and NEC codes. Full compliance is dependent on final wiring design and installation.

Figure A. 1
Circuit Protection under NEC 1999 110-10 (preferred fully rated devices)

Figure A. 2
Circuit Protection under NEC 1999 110-10 (allowed but no longer preferred)

To avoid nuisance tripping, refer to the following table and select the appropriate combination of system module, secondary circuit protection device, and axis modules.

Use System Module:	With Secondary Circuit Protection Device:	And Axis Module Combination:
1394x-SJT05-x	1492-CB3-H300	Any combination of AM03 and AM04 up to 4 axis modules. Any combination of AM03, AM04, and AM07 where no more than two AM07s are being used. Use of other combinations of axis modules with this system module may result in nuisance tripping on power up due to a higher inrush current.
	A 1492 device is not recommended for this option.	Other combinations of AM07, AM50, and AM75s. Some local electrical codes require that the circuit breaker rating not exceed 400\% of the full load device current. The inrush current draw of the 1394 in some combinations exceeds the 30A breaker and will result in nuisance tripping.
$1394 x$-SJT10-x	1492-CB3-H500	All
$1394 x$-SJT22-x	1492-CB3-H600	All

External Shunt Resistor Kit for 5 and 10 kW Systems

The table below shows the ratings for the external (optional) shunt resistor.

Catalog Number	Ratings	Shipping Weight	Resistance
1394-SR10A	1400 W continuous, (two second maximum on time)	$4.99 \mathrm{~kg}(11 \mathrm{lb})$	16 Ohms

Important: Use fuse replacement kit (1394-SR10A-FUSE-A) when replacing the 1394-SR10A shunt fuse. Refer to the Miscellaneous Accessories section in Appendix D for more information.

1394 Shunt Module for the 22 kW System

The table below shows the ratings for the 1394 shunt module for the 22 kW system module.

Catalog Number	Series Letter	Ratings	Shipping Weight	Resistance	Agency Certifications
1394-SR9A	B	300 W continuous, $160,000 \mathrm{~W}$ peak, module (no fan)	$3.63 \mathrm{~kg}(8 \mathrm{lb})$	4 Ohms	For all applicable directives: UL Listed (file
1394-SR9AF	B	900W continuous, $160,000 \mathrm{~W}$ peak, module (no fan)	$3.63 \mathrm{~kg}(8 \mathrm{lb})$		\#E59272) CUL Listed CE
1394-SR36A	B	1800 W Continuous, $160,000 \mathrm{~W}$ peak, module (no fan)	$8.6 \mathrm{~kg}(19.0 \mathrm{lb})$		
1394-SR36AF	B	3600W continuous, $160,000 \mathrm{~W}$ peak, fan-cooled module	$9.0 \mathrm{~kg} \mathrm{(20.0lb)}$		

Refer to the following table for fuse replacement information.

If your 1394-SR9A, -SR9AF, -SR36A, and -SR36AF shunt module:	You need a:
Has the UL mark	Bussmann 600V DC 50A fuse (FWP50A14F) or equivalent.
Does not have the UL mark	Bussmann 600V DC 40A fuse (170N2013) or equivalent.

Environmental Specifications

Mount the 1394 in an enclosure that is clean and dry [IP55 protection rating minimum (IEC publication 529)]. For enclosures ventilated with ambient air, be sure to have appropriate filtering to protect against contamination. Keep the ambient air temperature between 0° and $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ and $\left.122^{\circ} \mathrm{F}\right)$ and the humidity between 5% and 95%, non-condensing.

The 1394 can operate at elevations to 1000 meters (3300 ft) without derating, however, the continuous current rating must be derated by 3% for each additional 300 m (1000 ft) up to $3000 \mathrm{~m}(10,000 \mathrm{ft})$. Consult with your local Allen-Bradley Sales Representative prior to operating at over $3000 \mathrm{~m}(10,000 \mathrm{ft})$.

Refer to the table below for 1394 shock and vibration specifications.

Mode	Maximum Shock	Maximum Vibration
Operating	15 g	1 g
Non-operating	30 g	2.5 g

Power Dissipation

The power dissipation characteristics of the 1394 system and axis modules are provided below (use for 480 V or 360 V input).

Important: Use the power dissipation figures shown below to calculate cumulative system heat dissipation to ensure that the ambient temperature inside the enclosure does not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$. To calculate total power dissipation, add the dissipation of the system module to the dissipation of the axis module(s).

System Modules

The power dissipation (in watts) of the system module types is shown below.

$\%$ of Rated Power Output	Power Dissipation (in watts)		
	$\mathbf{1 3 9 4 x}$-SJT05- $\boldsymbol{1 3 9 4 x}$-SJT10- \boldsymbol{x}	$\mathbf{1 3 9 4 x}$-SJT22- \boldsymbol{x}	
20	66	70	100
40	70	77	150
60	73	84	200
80	77	81	250
100	80	98	300

Axis Modules

The power dissipation (in watts) of the axis modules is shown below:

\% of Rated Power Output	Power Dissipation (in watts)								
	Total					Inside Cabinet		Outside Cabinet	
	AM03	AM04	AM07	AM50 ${ }^{1}$ and AM50-IH ${ }^{2}$	AM75 ${ }^{1}$ and AM75-IH ${ }^{2}$	AM50 ${ }^{1}$	AM75 ${ }^{1}$	AM50 ${ }^{1}$	AM75 ${ }^{1}$
20	24	27	33	56	85	18	18	38	67
40	30	36	48	95	145	18	18	77	127
60	36	45	63	139	212	18	18	138	194
80	42	54	78	183	279	18	18	165	261
100	48	63	93	227	346	18	18	209	324

[^1]
DC Link Module

The power dissipation for the 1394 -DCLM is shown below.

The:	For the 1394-DCLM is:
Power dissipation	4.225 W maximum

Drive Interface Module

The power dissipation for the 1394-DIM is shown below.

The:	For the 1394-DIM is:
Power dissipation	30 W maximum

Internal Shunt Resistor for the 5 and 10 kW System (standard)

When the shunt resistor inside $1394 x$-SJT05 and 1394x-SJT10 system module is active, some additional power will be dissipated at the system module. Its maximum dissipation is 200W. Most applications will use less than 10% of this capacity.

The:	Is:
Rating of the internal shunt resistor	200 W continuous, 40,000W peak (two second maximum on time)
Resistance of the internal shunt resistor	16 ohms

The communication specifications are listed in the tables starting below.

Encoder Input Specifications

The table below lists the encoder input specifications for the system module (1394x-SJTxx-C-xx, -L-xx, and -T- $x x$ systems).

The:	Is:
Number of encoder inputs	4 (axis $0,1,2$, and 3) for 1394x-SJT $x x-C-x x$ and-T-xxsystems 2 (axis 0 and 1) for 1394C-SJT $x x$ L- $-x x$ systems
Type of encoder input	Incremental AB quadrature; optically isolated, differential with marker channel
Encoder interface IC	AM26LS32 or equivalent
Compatible encoder types	Differential, TTI-level (5V DC) line driver outputs, with or without marker
Decode modes	4 times quadrature, step/direction, count up/count down
Maximum encoder frequency	$4,000,000$ counts per second (4 MHz). This is equivalent to a channel frequency of 1 MHz in 4x quadrature decode mode.
Input impedance	7 kohms minimum (each input)
Encoder power	5 V DC @ 1A, user supplied

Dedicated Discrete I/O Specifications

The table below lists the dedicated discrete I/O specifications for the system module (1394x-SJTxx-C-xx, -L-xx, and -T- $x x$ systems).

The:	Is:
Number of dedicated discrete inputs	16 (4 each for axis 0, 1, 2, and 3)
Dedicated discrete input functions	Home limit switch, positive overtravel limit switch, negative overtravel limit switch, position registration, and thermal fault.
Input type	Optically isolated
Operating voltage	24V DC, 28V DC maximum or 5V DC nominal; 10V DC maximum for position registration inputs
Input On current	$12 \mathrm{~mA} \mathrm{per} \mathrm{input} \mathrm{(nominal);} 2.5 \mathrm{~mA}$ for position registration inputs
Input impedance	2 kohms (resistive) per input; 8.8 kohms (resistive) for 24 V position registration inputs.
Input response time	5 ms maximum; $1 \mu \mathrm{~s} \mathrm{maximum} \mathrm{for} \mathrm{position} \mathrm{registration}$ inputs

Serial I/O Specifications

The table below lists the dedicated serial I/O specifications for the system module (1394x-SJT $x x-\mathrm{C}-x x$, -L- $x x$, and -T- $x x$ systems).

The:	Is:
Number of serial channels	2 (serial port A and serial port B)
Channel type	Optically isolated RS-232 or RS-422; each channel individually configured via internal switch
Information code	ASCII
Baud rate	User-selectable up to 128 kbaud (rs-422); 115.2 kbaud (RS-232)
Number of start bits	One
Number of stop bits	One
Word length	8 bits (7 data bits plus 1 parity bit)
Parity	Space parity transmitted; receive parity ignored (may be mark, space, even, or odd)
Duplex	Full or half (user-selectable)
Data synchronization	XON (control-q)/XOFF (control-s)
Front panel connectors	IBM-PC/AT compatible 9-pin D-type female
RS-422 termination	User-selectable 220 ohm resistor via internal switch

DH-485 Specifications

The table below lists the DH-485 specifications for the system module (1394x-SJT $x x$-C- $x x$, -L- $x x$, and -T- $x x$ systems).

The:	Is:
Number of DH-485 channels	One; replaces serial port B when used
Channel type	Optically isolated half-duplex RS-485
Baud rate	9,600 or 19.2 kbaud (user-selectable)
Front panel connectors	Two RJ-45 jacks (+24 V is not provided)
RS-485	User-selectable 220 ohms resistor via internal switch
Node address	User-selectable between 0 and 31 inclusive
Node type	Token-passing master
Accessible data type	- One binary file (B3) for up to 16,384 bits
	- One integer file (N7) for up to 1,02416 -bit values
	- One floating point file (F8) for up to 512 32-bit values
	- One ASCII string file (A) for up to 2,048 characters
	- Nine user-configured files; each can be individually
	configured as any of the above types or as a BCD file for
	floating point simulation

Flex I/O Specifications

The table below lists the Flex I/O specifications for the system module (1394x-SJT $x x$-C- $x x$, -L-xx, and -T- $x x$ systems).

The:	Is:
Maximum number of Flex I/O modules	8
Compatible modules	- 1794-IB16; 16 24V DC discrete inputs - 1794-IA8; 8115 V AC discrete inputs - 1794-IE8; 8 current/voltage analog inputs - 1794-OB16; 1624 V DC discrete outputs - 1794-OA8; 8115 V AC discrete outputs - 1794-OE4; 4 current/voltage analog outputs - 1794-IE4XOE2; 4 current/voltage analog inputs and 2 current/voltage analog outputs - 1794-IB10XOB6; discrete combination module - 1794-OW8 relay output module - 1794-IF4I isolated analog input module - 1794-OB16P discrete output (protected)
Interface	Direct; no 1794-ASB or other adapter required

GMC System Specifications

The table below lists the specifications for the GMC system module (1394x-SJT $x x-\mathrm{C}-x x$, -L-xx, and -T- $x x$ systems).

The:	Is:
Servo loop sample and update rate	250 Hz to 2 kHz for 4 axes
Maximum feedback frequency	$4 \mathrm{MHz}(4,000,000$ feedback counts per second)
Absolute position range	$\pm 1,000,000,000$ feedback counts for linear axes; infinite number for rotary axes
Absolute position resolution	15 position unit digits or 32 feedback count bits, whichever is less
Speed range	0.00001 feedback counts per servo update to 4,000,000 feedback counts per second
Speed resolution	15 position unit digits or 15 feedback count bits, whichever is less
Acceleration/deceleration range	0.00001 feedback counts per servo update to 4,000,000 feedback counts per second
Acceleration/deceleration	15 position unit digits or 15 feedback count bits, whichever is less resolution
Electronic gearing gear ratio	$0.00001: 1$ to 9.99999:1 (slave counts:master counts)
range	8 position unit digits or 32 feedback count bits
Electronic gearing gear ratio resolution	32 -bit floating point
Servo gain resolution	0 to 100\%
Servo output limit range	$\mathrm{P}=$ proportional gain (counts per millisecond/error count)

Remote I/O Adapter Specifications

The table below lists the remote I/O adapter specifications for the system module (1394x-SJT $x x$-C- $x x$, -L- $x x$, and -T- $x x$ systems).

The:	Is:			
Baud rate	57.6 k, 115.2 k , or 230.4 k (user-selectable)			
Rack address	User-selectable between 0 and 31 decimal			
Rack width	User-selectable in quarter-rack increments (1/4, 1/2, 3/4, or full)			
Transfer type	1/0 Group			
Block	0246	024	02	0
Discrete	1357	135	13	1
Discrete		246	24	2
Discrete		357	35	3
Discrete			46	4
Discrete			57	5
Discrete				6
Discrete				7
Starting I/O group	0246	024	02	0
Rack width	1/4	1/2	3/4	full
Number of discrete I/O bits	- 12 dedicated inputs - 12 dedicated outputs - $1 / 4$ rack width with 4 inputs and 4 outputs - $1 / 2$ rack width with 36 inputs and 36 outputs - $3 / 4$ rack width with 68 inputs and 68 outputs - Full rack width with 100 inputs and 100 outputs			
Maximum block transfer length	64 words (128 bytes)			
Block transfer data types	- User variable values - Axis data parameter value - Axis data bit state - Master cam position point values - Master cam time point values - Slave cam position point values - Axis or system variable value			
Block transfer data formats	- 32-bit (double-word) 2s compliment integer - 16-bit (single-word) 2s compliment integer - 32-bit (8-digit) signed BCD - 32-bit IEEE floating point - Word-swapped 32-bit (double-word) 2s compliment integer - Word-swapped 32-bit (8-digit) signed BCD - Word-swapped 32-bit IEEE floating-point			

AxisLink Specifications

The table below lists the AxisLink specifications for the system module (1394x-SJTxx-C-xx, -L-xx, and -T-xx systems).

The:	Is:	
Baud rate	Standard and extended node configuration	One megabit per second
	Extended length configuration	500 kbits per second
Cable type	Standard and extended node configuration	Allen-Bradley 1770-CD RIO cable (Belden 9463 or equivalent)
	Extended length configuration	Belden 9182, Carol C8014, or equivalent
Cable length	Standard and extended node configuration	$25 \mathrm{~m}(82 \mathrm{ft})$ maximum. $1 \mathrm{~m}(3 \mathrm{ft})$ minimum between controllers.
	Extended length configuration	$125 \mathrm{~m}(410 \mathrm{ft})$ maximum. $1 \mathrm{~m}(3 \mathrm{ft})$ minimum between controllers.
Number of motion controllers	Standard and extended length configurations	8 maximum for a total of 32 possible axes
	Extended node configuration	16 maximum for a total of 64 possible axes
Addressing	Standard and extended length configurations	User-selectable address via rotary selector switch on front panel
	Extended node configuration	User-selectable address via GML
Number of virtual master axis	Standard configuration	4 maximum; 1 per motion controller. Any axis on any motion controller can be a virtual master axis to any other motion controller. Each motion controller can define a total of 2 separate axes on any other motion controllers as virtual master axes, but only one can be active any time. A total of 4 different axes can be active as virtual master axes at any time.
	Extended length and extended node configurations	2 maximum; 1 per motion controller. Any axis on any motion controller can be a virtual master axis to any other motion controller. Each motion controller can define a total of 2 separate axes on any other motion controllers as virtual master axes, but only one can be active any time. A total of two different axes can be active as virtual master axes at any time.
Type of virtual master axes	All configurations	Command and actual. Each virtual master axis may be defined to report its command or actual position.
Slave axes	Standard and extended length configuration	31 maximum total per virtual master axis (3 local $+4 x$ 7 other motion controllers = 31).
	Extended node configuration	63 maximum total per virtual master axis (3 local $+4 x$ 15 other motion controllers $=63$).
Number of discrete I/O	All configurations	112 inputs maximum and 16 user-defined outputs per motion controller. Any motion controller can read 16 discrete outputs of any other motion controller, giving a maximum of $7 \times 16=112$ discrete inputs per motion controller. For extended node configuration, discrete I/ 0 can still only be obtained from a maximum of 7 other controllers (112 inputs maximum), not from all 15 other controllers available in a 16 node maximum extended node configuration.
Discrete I/O response	All configurations	≤ 1 millisecond

Dimensions

Within this section, you will find dimensions for:

- The 1394 system module
- Axis modules (including 1394-DIM and 1394-DCLM)
- Filters
- External shunt modules
- Motors

1394 System Module Dimensions

Figure A. 3
1394x-SJT05, 1394x-SJT10 and 1394x-SJT22 System Module

ATTENTION: If you are mounting a $1394 x$-SJT-T system module, you will need an additional 101.6 mm (4 in .) of clearance to the left of the system module to allow for connecting the SLC interface cable (1746-C7 or -C9).

Axis Module Dimensions

Figure A. 4
1394x-AM03, -AM04, -AM07, -DIM, and -DCLM Front View

All slots accept M6 or 1/4-20 mtg. screws
${ }^{1}$ Dimension shown is for mounting hardware location and does not reflect the location of the lower slot radius.

Figure A. 5
1394x-AM03, -AM04, -AM07, -DIM, and -DCLM Side View

Figure A. 6
1394x-AM50, -AM50-IH, -AM75, and -AM75-IH Axis Module Front View

Dimensions are in millimeters and (inches) Depth $=280$ (11.02)

Mounting Hole Detail

All Slots Accept M6 or 1/4-20 Mtg. Screws
${ }^{1}$ Dimension shown is for mounting hardware location and does not reflect the location of the lower slot radius.

When using the gasket provided with the axis module, torque the M 6 to $7.9 \mathrm{~N}-\mathrm{m}$ and the $1 / 4-20$ to $75 \mathrm{lb}-\mathrm{in}$.

Figure A. 7
1394x-AM50 and -AM75 Axis Module Side View

Figure A. 8
1394C-AM50-IH and -AM75-IH Axis Module Side View

Filter Dimensions
Figure A. 9
SP-74102-006-01 Filter Dimensions

Figure A. 10
SP-74102-006-02 Filter Dimensions

Dimensions are in millimeters and (inches)

Figure A. 11
SP-74102-006-03 Filter Dimensions

External Shunt Dimensions

Figure A. 12
1394-SR10A Shunt Resistor Kit

ATTENTION: To avoid the hazard of shock or burn and ignition of flammable material, provide appropriate guarding. The external shunt resistors and module enclosures can reach temperatures up to 350° $\mathrm{C}\left(662^{\circ} \mathrm{F}\right)$. Install per local codes.

Figure A. 13
1394-SR-9A and -9AF Front View Dimensions

Dimensions are in millimeters and (inches)
Depth $=280(11.02)$

Mounting Hole Detail

All Slots Accept M6 or 1/4-20 Mtg. Screws
${ }^{1}$ Dimension shown is for mounting hardware location and does not reflect the location of the lower slot radius.

Figure A. 14
1394-SR-9A and -9AF Side View Dimensions

Figure A. 15
1394-SR-36A and -36AF Front View Dimensions

Figure A. 16
1394-SR-36A and -36AF Side View Dimensions

Motor Dimensions

Figure A. 17
1326AB-B4 Torque Plus Series (Resolver and High Resolution Feedback)

Flange Mount in millimeters and (inches)

Feedback	Catalog number	Description ${ }^{1,2}$	AD	AG	C	Key	End milled keyway (full depth)
Resolver	1326AB-B410x-21	without brake	$\begin{array}{\|l} \hline 201.7 \\ (7.94) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 235.7 \\ (9.28) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 275.6 \\ (10.85) \\ \hline \end{array}$	$\begin{aligned} & \hline 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & \hline 30.7 \\ & (1.21) \end{aligned}$
	1326AB-B420x-21	without brake	$\begin{array}{\|l\|} \hline 258.8 \\ (10.19) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 292.9 \\ (11.53) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 333.0 \\ (13.11) \end{array}$	$\begin{aligned} & 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & 30.7 \\ & (1.21) \end{aligned}$
	1326AB-B430x-21	without brake	$\begin{array}{\|l\|} \hline 328.7 \\ (12.94) \end{array}$	$\begin{array}{\|l\|} \hline 362.7 \\ (14.28) \end{array}$	$\begin{aligned} & 402.8 \\ & (15.86) \end{aligned}$	$\begin{aligned} & 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & \hline 30.7 \\ & (1.21) \end{aligned}$
High-Resolution	1326AB-B410x-21M/S	without brake	$\begin{array}{\|l\|} \hline 201.7 \\ (7.94) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 241.8 \\ (9.52) \\ \hline \end{array}$	$\begin{aligned} & 281.7 \\ & (11.09) \end{aligned}$	$\begin{aligned} & 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & 30.7 \\ & (1.21) \end{aligned}$
	1326AB-B420x-21M/S	without brake	$\begin{array}{\|l\|} \hline 258.8 \\ (10.19) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 299.0 \\ (11.77) \end{array}$	$\begin{array}{\|l\|} \hline 338.8 \\ (13.34) \\ \hline \end{array}$	$\begin{aligned} & 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & 30.7 \\ & (1.21) \end{aligned}$
	1326AB-B430x-21M/S	without brake	$\begin{array}{\|l\|} \hline 328.7 \\ (12.94) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 368.8 \\ (14.52) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 408.7 \\ (16.09) \\ \hline \end{array}$	$\begin{aligned} & 6 \times 6 \times 30 \\ & (0.236 \times 0.236 \times 1.18) \end{aligned}$	$\begin{aligned} & 30.7 \\ & (1.21) \end{aligned}$

[^2]${ }^{2}$ If ordering a 1326AB-B4xxxx-21-xK4L with optional 24 V DC, $8.1 \mathrm{~N}-\mathrm{m}$ (72 lb -in.) brake (IP67 rated), add 45 mm (1.75 in .) to AD, AG and C. Dimensions are per NEMA Standards MG 7-2.4.1.3 and IEC 72-1. Shaft tolerance per DIN 42955, "N" tolerance.

Figure A. 18
1326AB-B5 Torque Plus Series (Resolver and High Resolution Feedback)

(1)Shaft and Pilot Tolerances

Maximum Shaft Runout 0.05 (0.002) T.I.R
Shaft Endplay 0.127 (0.005)
Maximum Pilot Eccentricity 0.10 (0.004) T.I.R
Maximum Face Runout 0.10 (0.004) T.I.R

Name Plate Detail

Flange Mount in millimeters and (inches)

Feedback	Catalog number	Description ${ }^{1,2}$	AL	AD	AG	C	Key	End milled keyway (full depth)
V								

Figure A. 19
1326AB-B7 Torque Plus Series (Resolver and High Resolution Feedback)

(1) Shaft and Pilot Tolerances

Maximum Shaft Runout 0.05 (0.002) T.I.R
Shaft Endplay 0.127 (0.005)
Maximum Pilot Eccentricity 0.10 (0.004) T.I.R
Maximum Face Runout 0.10 (0.004) T.I.R

Allen-Bradley

	\square							

Figure A. 20
1326AS-B3 Series Servo Motor

(1)Shaft and Pilot Tolerances

Shaft Runout	$0.025(0.001)$ T.I.R
Shaft Endplay	$0.025(0.001)$
Pilot Eccentricity	$0.08(0.0032)$ T.I.R
Maximum Face Runout	$0.08(0.0032)$ T.I.R

Allen-Bradey

XXXXXXXXXXXXXXX	SERIAL NO. XXXXXXXXXXX			
CAT NO. XYYYYYYYYYYYXXYYYYYXXY	SERIES X		cat. no. XXXXXXXXXXXXXXXXXXXXXXX	SERIES X
:---:	:---:	PART NO. XXXXXXXXXXX	DATE CODE $X X X X$	
:---		MAX. SPEED XXXX RPM	RES. XXX OHMS $25^{\circ} \mathrm{C}$.	
:---:	:---			
MAX. COMT.		MAX. CONT. OUTPUT POWER XXXX KW $40^{\circ} \mathrm{C}$. MAX. CONT. STALL TOROUE XXXXXXXXXXXXXXX Nm/LB.IN. $40^{\circ} \mathrm{C}$. MAX. CONT. RMS AMPERES XXXXXX AMPS $40^{\circ} \mathrm{C}$.		

 BRAKE COIL XXXX OHMS $25^{\circ} \mathrm{C}$. XXXX RATED $40^{\circ} \mathrm{C}$.
 BULLETIN 1326 AC SERVO MOTOR MADE IN U.S.A.

Flange Mount in millimeters and (inches)

Catalog number	Description 1	AD	AG	C	Key	End milled keyway (full depth)
1326AS-B310x-21	without brake	135	165	195	$5 \times 5 \times 20$	20
		(5.32)	(6.50)	(7.68)	$(0.197 \times 0.197 \times 0.79)$	(0.79)
1326AS-B330x-21	without brake	186	216	246	$5 \times 5 \times 20$	20
		(7.32)	(8.50)	(9.68)	$(0.197 \times 0.197 \times 0.79)$	(0.79)

[^3]Dimensions are per NEMA Standards MG 7-2.4.1.3 and IEC 72-1. Shaft and pilot tolerances are per DIN 42955, N tolerance.

Figure A. 21
1326AS-B4 Series Servo Motor

(1)Shaft and Pilot Tolerances

Shaft Runout	$0.04(0.0016)$ T.I.R
Shaft Endplay	$0.025(0.001)$
Pilot Eccentricity	$0.08(0.0032)$ T.I.R
Maximum Face Runout	$0.08(0.0032)$ T.I.R

Name Plate Detail

Allen-Bradley

XXXXXXXXXXXXXXXX \begin{tabular}{|c|c|}
\hline cat. No. XXXXXXXXXXXXXXXXXXX \& SERIES X

\hline

\hline PART NO. XXXXXXXXXXX \& DATE CODE

\hline
\end{tabular} MAX. SPEED XXXX RPM RES. XXX OHMS $25^{\circ} \mathrm{C}$. MAX. CONT. OUTPUT POWER XXXX KW $40^{\circ} \mathrm{C}$. MAX. Coni. STALL TOROUE XXXXXXXXXXXX NmLIB.N. $40^{\circ} \mathrm{C}$. MAX. CONT. RMS AMPERES XXXXXX AMPS 40 ${ }^{\circ}$.

 BRAKE COIL XXXX OHMS 25°. XXXX RATED $40^{\circ} \mathrm{C}$. XXXXXXXXXXXXXXXXXXXXX
 BULLETIW 1326 AG SERVO MOTOR BULLETN US.A.

Flange Mount in millimeters and (inches)

Catalog number	Description 1	AD	AG	C	Key	End milled keyway (full depth)
1326AS-B420x-21	without brake	208	238	278	$6 \times 6 \times 30$	30.0 (1.18)
1326AS-B440x-21	without brake	259	289	329	$6 \times 6 \times 30$	30.0
		(10.19)	(11.38)	(12.95)	$(0.236 \times 0.236 \times 1.18)$	(1.18)
1326AS-B460x-21	without brake	310	340	380	$6 \times 6 \times 30$	30.0
		(12.19)	(13.38)	(14.95)	$(0.236 \times 0.236 \times 1.18)$	(1.18)

[^4]Figure A. 22
1326AS-B6 Series Servo Motor

(1)Shaft and Pilot Tolerances

(1)Shaft and Pilot Tolerances	
Shaft Runout	$0.05(0.002)$ T.I.R
Shaft Endplay	$0.025(0.001)$
Pilot Eccentricity	$0.10(0.004)$ T.I.R
Maximum Face Runout	$0.10(0.004)$ T.I.R

Name Plate Detail

Flange Mount in millimeters and (inches)

Catalog number	Description	AL	AD1	AD2	AG	C	Key	End milled keyway (full depth)
1326AS-B630 x-21	without brake	69	255	231	291	351	$10 \times 8 \times 40$	40
		(2.71)	(10.03)	(9.09)	(11.45)	(13.81)	$(0.394 \times 0.315 \times 1.57)$	(1.57)
1326AS-B660x-21	without brake	145	331	307	367	427	$10 \times 8 \times 40$	40
		(5.71)	(13.03)	(12.09)	(14.45)	(16.81)	$(0.394 \times 0.315 \times 1.57)$	(1.57)
1326AS-B690x-21	without brake	221	407	383	443	503	$10 \times 8 \times 40$	40
		(8.71)	(16.03)	(15.09)	(17.45)	(19.81)	$(0.394 \times 0.315 \times 1.57)$	(1.57)

1 If you are ordering a 1326AS-B6xxxx-21-K6 with an optional 24 V DC $36.7 \mathrm{~N}-\mathrm{m}$ ($325 \mathrm{lb}-\mathrm{in}$.) brake, add 54 mm (2.13 in .) to AL, AD1, AD2, AG and C.
Dimensions are per NEMA Standards MG 7-2.4.1.3 and IEC 72-1. Shaft and pilot tolerances are per DIN 42955, N tolerance. The eye bolt diameter is 30.48 mm (1.20 in) O.D. x 19.05 mm (0.75 in) I.D.

Figure A. 23
1326AS-B8 Series Servo Motor

(1)Shaft and Pilot Tolerances

Shaft Runout
0.05 (0.002) T.I.R

Shaft Endplay $\quad 0.025(0.001)$
Pilot Eccentricity $\quad 0.10(0.004)$ T.I.R
Maximum Face Runout $\quad 0.10$ (0.004) T.I.R

Flange Mount in millimeters and (inches)

Catalog number	Description	AL	AD	AG	C	Key	End milled keyway (full depth)
1326AS-B840x-21	without brake	131	308	346	431	$12 \times 8 \times 60$	60
		(5.15)	(12.13)	(13.63)	(16.97)	$(0.472 \times 0.315 \times 2.36)$	(2.36)
1326AS-B860x-21	without brake	235	359	397	482	$12 \times 8 \times 60$	60
		(9.25)	(14.13)	(15.63)	(18.97)	$(0.472 \times 0.315 \times 2.36)$	(2.36)

[^5]
Servo Motor Performance Data

This section contains performance data for 1326AB and 1326AS motors and 1394 axis module combinations.

1326AB Performance Data

Motor Catalog Number ${ }^{1}$	Rated Speed rpm		Motor Rated Torque N-m (Ib-in.)	Motor Rated Output kW	Rotor Inertia $\mathrm{kg}-\mathrm{m}^{2}$ ($\mathrm{lb}-\mathrm{in} .-\mathrm{s}^{2}$)	System Continuous Torque $\mathrm{N}-\mathrm{m}$ (Ib-in.)	System Peak Stall Torque $\mathrm{N}-\mathrm{m}$ (lb-in.)	System Continuous Stall Current Amperes	System Peak Stall Current Amperes	1394 Axis Module
	480V	360 V								
1326AB-B410G	5000	4000	2.7 (24)	1.0	$\begin{aligned} & 0.0005 \\ & (0.004) \end{aligned}$	2.7 (24)	6.6 (58) ${ }^{3}$	2.45	6.0	AM03
							8.1 (72)		7.32	AM04
										AM07
1326AB-B410J	7250	6000	2.7 (24)	1.4	$\begin{aligned} & 0.0005 \\ & (0.004) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.3(21)^{2} \\ \hline 2.7(24) \\ \hline \end{array}$	$4.7(42)^{3}$	3.0	6.0	AM03
							$7.0(62)^{3}$	3.48	9.0	AM04
							8.1 (72)		10.4	AM07
1326AB-B420E	3000	2500	5.0 (44)	1.1	$\begin{aligned} & 0.0008 \\ & (0.007) \end{aligned}$	5.0 (44)	10.6 (94) ${ }^{3}$	2.84	6.0	AM03
							14.9 (132)		8.0	AM04
										AM07
1326AB-B420H	6000	5000	5.1 (45)	2.2	$\begin{aligned} & 0.0008 \\ & (0.007) \end{aligned}$	$2.8(25)^{2}$	5.6 (50) ${ }^{3}$	3.0	6.0	AM03
						4.2 (37) ${ }^{2}$	$8.4(74)^{3}$	4.5	9.0	AM04
						5.1 (45)	$14.0(124)^{3}$	5.46	15.0	AM07
1326AB-B430E	3000	2500	6.6 (58)	1.4	$\begin{aligned} & 0.001 \\ & (0.01) \end{aligned}$	$5.1(45)^{2}$	10.1 (89) ${ }^{3}$	3.0	6.0	AM03
						6.6 (58)	15.2 (135) ${ }^{3}$	3.9	9.0	AM04
							19.7 (174)		11.6	AM07
1326AB-B430G	5000	4000	6.4 (57)	2.3	$\begin{aligned} & 0.001 \\ & (0.01) \end{aligned}$	$5.2(46)^{2}$	10.3 (92) ${ }^{3}$	4.5	9.0	AM04
						6.4 (57)	$17.2(153)^{3}$	5.6	15.0	AM07
1326AB-B515E	3000	2500	10.4 (92)	2.3	$\begin{aligned} & \hline 0.004 \\ & (0.03) \end{aligned}$	7.7 (68) ${ }^{2}$	$15.4(136)^{3}$	4.5	9.0	AM04
						10.4 (92)	25.6 (226) ${ }^{3}$	6.1	15.0	AM07
							31.2 (276)		18.3	AM50/AM50-IH
										AM75/AM75-IH
1326AB-B515G	5000	4000	10.4 (92)	2.9	$\begin{aligned} & \hline 0.004 \\ & (0.03) \end{aligned}$	$7.9(70)^{2}$	15.8 (140) ${ }^{3}$	7.5	15	AM07
						10.4 (92)	31.2 (276)	9.5	28.5	AM50/AM50-IH
										AM75/AM75-IH
1326AB-B520E	3000	2500	13.0 (115)	2.9	$\begin{aligned} & 0.005 \\ & (0.04) \end{aligned}$	8.8 (78) ${ }^{2}$	$17.7(157)^{3}$	4.5	9.0	AM04
						13.0 (115)	$29.4(260)^{3}$	6.7	15.0	AM07
							39.0 (345)		20.1	AM50/AM50-IH
										AM75/AM75-IH
1326AB-B520F	3500	3000	13.1 (116)	2.9	$\begin{aligned} & 0.005 \\ & (0.04) \end{aligned}$	11.2 (99) ${ }^{2}$	22.4 (198) ${ }^{3}$	7.5	15.0	AM07
						13.1 (116)	39.3 (348)	8.8	26.4	AM50/AM50-IH
										AM75/AM75-IH
1326AB-B530E	3000	2500	18.0 (160)	4.2	$\begin{aligned} & 0.007 \\ & (0.06) \end{aligned}$	14.2 (126) ${ }^{2}$	$28.4(251)^{3}$	7.5	15.0	AM07
						18.0 (160)	54.2 (480)	9.5	28.5	AM50/AM50-IH
										AM75/AM75-IH
1326AB-B720E	3500	3000	30.9 (273)	6.8	$\begin{aligned} & 0.017 \\ & (0.15) \end{aligned}$	30.9 (273)	$58.5(518)^{3}$	17.5	33.2	AM50/AM50-IH
							$88.1(780)^{3}$		50.0	AM75/AM75-IH
1326AB-B720F	5000	4100	31.8 (281.7)	11.7	$\begin{aligned} & 0.017 \\ & (0.15) \end{aligned}$	31.8 (281.7)	$38(336)^{3}$	27.5	33.2	AM50/AM50-IH
							$56(495)^{3}$		50	AM75/AM75-IH
1326AB-B730E	3350	2800	39.0 (345)	9.6	$\begin{aligned} & 0.025 \\ & (0.23) \end{aligned}$	39.0 (345)	56.8 (502) ${ }^{3}$	22.8	33.2	AM50/AM50-IH
							$85.4(756)^{3}$		50.0	AM75/AM75-IH
1326AB-B740C	2200	1800	53.0 (469)	8.7	$\begin{aligned} & \hline 0.034 \\ & (0.30) \end{aligned}$	53.0 (469)	$84.2(745)^{3}$	20.9	33.2	AM50/AM50-IH
							126.8 (1122) ${ }^{3}$		50.0	AM75/AM75-IH
1326AB-B740E	3400	2800	50.0 (450)	12.7	$\begin{aligned} & \hline 0.034 \\ & (0.30) \end{aligned}$	50.0 (450)	52.7 (466) ${ }^{3}$	32.0	33.2	AM50/AM50-IH
							79.4 (702) ${ }^{3}$		50.0	AM75/AM75-IH

[^6]
1326AS Performance Data

Motor Catalog Number ${ }^{1}$	Rated Speed rpm		Motor Rated Torque $\mathrm{N}-\mathrm{m}$ (Ib-in.)	Motor Rated Output kW	Rotor Inertia $\mathrm{kg}-\mathrm{m}^{2}$ (lb-in.-s²)	System Continuous Torque N-m (Ib-in.)	System Peak Stall Torque N-m (Ib-in.)	System Continuous Stall Current Amperes	System Peak Stall Current Amperes	1394 Axis Module
	480V	360 V								
1326AS-B310H	6200	5120	0.7 (6.1)	0.3	$\begin{aligned} & 0.000045 \\ & (0.0004) \end{aligned}$	0.7 (6.1)	2.1 (18)	0.8	2.4	AM03
1326AS-B330H	6500	5370	2.0 (18.0)	0.9	$\begin{aligned} & 0.00009 \\ & (0.0008) \end{aligned}$	2.1 (18)	5.6 (50)	2.1	6.0	AM03
										AM04
1326AS-B420G	5250	4340	3.2 (28.0)	1.2	$\begin{aligned} & 0.0003 \\ & (0.0027) \end{aligned}$	3.2 (28)	7.3 (65) ${ }^{3}$	2.6	6.0^{3}	AM03
							9.6 (84)		7.8	AM04
										AM07
1326AS-B440G	5250	4340	6.4 (56.0)	2.0	$\begin{aligned} & 0.0005 \\ & (0.0046) \end{aligned}$	$\begin{aligned} & \hline 5.3(47)^{2} \\ & \hline 6.4(56) \end{aligned}$	10.5 (93) ${ }^{3}$	$4.5{ }^{2}$	9.0^{3}	AM04
							17.6 (156)	5.4	15.0	AM07
							19.0 (168)		16.2	AM50/AM50-IH
1326AS-B460F	4300	3550	9.0 (80.0)	2.8	$\begin{aligned} & 0.00075 \\ & (0.0066) \end{aligned}$	$6.6(58)^{2}$	13.1 (116) ${ }^{3}$	4.5^{2}	$9.0{ }^{3}$	AM04
						9.0 (80)	21.9 (194)	6.2	15.0	AM07
							27.1 (240)		18.6	AM50/AM50-IH
1326AS-B630F	4500	3720	10.7 (95.0)	2.4	$\begin{aligned} & 0.0014 \\ & (0.012) \end{aligned}$	10.3 (91) ${ }^{2}$	20.6 (182) ${ }^{3}$	7.5^{2}	15.0^{3}	AM07
						10.7 (95)	25.4 (225)	7.8	18.5	AM50/AM50-IH
1326AS-B660E	3000	2480	21.5 (190)	3.4	$\begin{aligned} & 0.0025 \\ & (0.022) \end{aligned}$	$13.7(121)^{2}$	27.3 (242) ${ }^{3}$	7.5^{2}	15.0^{3}	AM07
						$21.5 \text { (190) }$	54.2 (480)	11.8	29.8	AM50/AM50-IH
							54.2 (480)		29.8	AM75/AM75-IH
1326AS-B690E	3000	2480	36.4 (322)	5.0	$\begin{aligned} & 0.0036 \\ & (0.032) \end{aligned}$	36.4 (322)	63.6 (563) ${ }^{3}$	19.0	$33.2{ }^{3}$	AM50/AM50-IH
							79.1 (700)		41.3	AM75/AM75-IH
1326AS-B840E	3000	2480	37.6 (333)	4.7	$\begin{aligned} & 0.0063 \\ & (0.056) \end{aligned}$	37.6 (333)	59.0 (522) ${ }^{3}$	21.2	$33.2{ }^{3}$	AM50/AM50-IH
							70.0 (620)		39.5	AM75/AM75-IH
1326AS-B860C	2000	1650	49.3 (436)	6.0	$\begin{aligned} & 0.0094 \\ & (0.083) \end{aligned}$	49.3 (436)	93.0 (823) ${ }^{3}$	17.6	$33.2{ }^{3}$	AM50/AM50-IH
							$\begin{aligned} & 124.0 \\ & (1100) \end{aligned}$		44.4	AM75/AM75-IH

${ }^{1}$ All ratings are for $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ motor ambient, $110^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ case, $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ amplifier ambient and $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ extemal heatsink ambient (AM50 and AM 75$)$.
For extended ratings at lower ambients contact Allen-Bradley.
${ }^{2}$ Limited by axis module continuous current.
${ }^{3}$ Limited by axis module peak current.

Appendix D

Catalog Numbers

Understanding Catalog
Numbers

Catalog numbers consist of various components that make up a 1394 system. Each character of the catalog number identifies a specific version or option for that component. The first four numbers represent the family of products (for example, 1394). The remaining characters represent a specific version or option of that module or family.

Determining Catalog Numbers

To help you to understand, we will provide an example of how to determine a catalog number for a 1394 system module.

The beginning portion of the catalog number for all 1394 system modules is $1394 x$-SJT (S for system module, J for $360 / 480 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$, and T for three-phase). In addition, you have the following options for which you must make a selection:

The options must appear in the order shown.

1394series-SJT kw rating-option-RL option

For example, if you were to use the table in the following section 1394 System Modules to select the Series C, 5 kW , integrated motion controller, with RIO and Axis Link, the catalog number would be:

> 1394C-SJT05-C-RL

When you combine all of the numbers, you create the catalog number for the system module that you require.

System Modules

1394 System Module

RL = With RIO and AxisLink (can only be ordered with the $-\mathrm{C},-\mathrm{L}$, or -T options)
${ }^{1}$ Enhanced system modules have Smart Power, improved terminations, and EMI filtering. Enhancements available only with 1394C-SJTxx-A, -C, -D, -L, and -T system modules.

9/440 System Module (Resolver based systems)

[^7]
CNC Serial Drive System Module

Note: Refer to 9/Series Integration and Maintenance Manual (publication 8520-6.2) for more information.

9/440 High Resolution/Absolute CNC System Module

4Q = Two more ports Encoder Feedback
Blank $=$ no option

Note: 8520-CHR (Series C) system modules include Smart Power, improved terminations, and EMI filtering. Refer to 9/Series Integration and Maintenance Manual (publication 8520-6.2) for more information.

Axis Modules

External Shunt Modules

Shunt Resistor Kit for 5 and 10 kW System Modules

Shunt Modules for 22 kW System Modules

System Module Cables

Control Interface Cables

Single Axis Flying Lead Cable

Two-Axis Prewired Cable

1326AB Servo Motors

1326 Shaft Oil Seal Kit for 1326AB Motors

Note: This kit is not required for IP67 motors. The shaft seal is factory installed.

Motor Junction Box Kit for 1326AB Motors

Note: The motor comes standard with IP65 plug style connectors mounted radially to the motor. This kit allows the connectors to be brought out axially to the motor without further wiring. Kit includes a motor junction box and mounting hardware.
Note: Do not use this kit with the high resolution encoder option. Instead, use the right angle connector cable option.

Feedback Mounting Adapter Kit for 1326AB Motors

Bulletin
Number

$\mathrm{MOD}=$ Modification Kit	
$\mathrm{M} 40=$	Allen-Bradley 845H Encoder for the
	B 4 series motor
$\mathrm{M} 50=$	Allen-Bradley 845 H Encoder for the
	B 5 series motor
$\mathrm{M} 60=$	Allen-Bradley 845 H Encoder for the
	B 7 series motor
$\mathrm{M} 42=$	Allen-Bradley $842 \mathrm{~A}-31$ Encoder for the
	B 4 series motor
$\mathrm{M} 52=$	Allen-Bradley $842 \mathrm{~A}-31$ Encoder for the
	B 5 series motor
$\mathrm{M} 72=$	Allen-Bradley $842 \mathrm{~A}-31$ Encoder for the
	B 7 series motor

Note: All kits contain a feedback mounting adapter, mounting hardware, and a coupling. The kit does not contain a feedback device.
Note: Do not use this kit with the high resolution encoder feedback option.

1326AS Servo Motors

1326 Shaft Oil Seal Kit for 1326AS Motors

Motor Junction Box Kit for 1326AS Motors

Bulletin

Note: The motor comes standard with IP65 plug style connectors mounted radially to the motor. This kit allows the connectors to be brought out axially to the motor without further wiring. Kit includes a motor junction box and mounting hardware.

Feedback Mounting Adapter Kit for 1326AS Motors

Note: All kits contain a feedback mounting adapter, mounting hardware, and a coupling. The kit does not contain a feedback device.

1326AH Servo Motors

For specifications and a detailed description of the 1326AH Hazardous Duty motors, refer to 1326AH Hazardous Duty Motors Product Data (publication 1326AH-TD001B-US-P).

Power and Feedback Cables Motor Power Cables

Motor Feedback Cables

Encoder Feedback Cables for 1326AB Motors

Use the following encoder feedback cables for connecting an optional 845 H encoder to a 1326 AB motor.

Miscellaneous Accessories

The following additional accessories are also available:

Accessory:	A-B Catalog Number:	Manufacturer's Number:
Terminal operating tool	1394-194	N/A
Terminal operating tool, steel	1394-194S	N/A
Brake and thermal axis connector kit	1394-199	N/A
Cable ground clamp kit	1394C-GCLAMP	N/A
1394-CCFK resolver feedback connector kit, (includes the connector, pins, and extraction tool to connect to 1326-CCU-xxx motor feedback cables)	1394-CCFK	N/A
Mating half for the 10-position resolver connector plug shell	N/A	AMP 770580-1
Connector pins for resolver connector	N/A	AMP 770988-3
Crimp tool for Encoder/AQB	N/A	AMP 90758-1
Crimp-tool for resolver	N/A	AMP 90759-1
Extraction tool	N/A	AMP 455822-2
Mating half for the AQuadB 12-position auxiliary encoder connector plug shells	N/A	AMP 770581-1
Connector pins for AQuadB and encoder connector	N/A	AMP 770986-3
23A Roxburgh filter	SP-74102-006-01	Roxburgh MIF323-GS
30A Roxburgh filter	SP-74102-006-02	Roxburgh MIF330-GS
75A Roxburgh filter	SP-74102-006-03	Roxburgh MIF375-GS
Terminator	SP-74102-015-01	N/A
1394 User manual	1394-5.0	N/A
Brake and thermal connector operating tool	N/A	Wago 231-304
Auxiliary encoder connector kit	8520-M12F	N/A
Fan replacement kit for 1394-AM50/AM75 axis modules	SP-74102-271-01	N/A
Kit, fuse, for 1394-SR10A (5 and 10 kW system modules)	1394-SR10A-FUSE-A	Bussmann FWP-40A14F
Kit, fuse, for 1394-SR9A (Series B)	1394-SR9A-FUSE-B	Bussmann FWP-50A14F
Kit, fuse, for 1394-SR9AF (Series B)	1394-SR9AF-FUSE-B	
Kit, fuse, for 1394-SR36A (Series B)	1394-SR36A-FUSE-B	
Kit, fuse, for 1394-SR36AF (Series B)	1394-SR36AF-FUSE-B	

Note: To determine the series of your module, refer to FigureP. 1 in the Preface.

[^0]: ${ }^{1}$ The power supply should be rated for 15A or greater inrush current upon power up.

[^1]: ${ }^{1}$ The AM50/75 are designed to mount with the rear heat sink extended outside the customer-supplied enclosure. If the modules are mounted entirely inside the customer supplied enclosure, the full power dissipation is inside the cabinet.
 ${ }^{2}$ The AM50/75-IH are designed to mount entirely inside the customer-supplied enclosure.

[^2]: ${ }^{1}$ If ordering a 1326AB-B4xxxx-21-K4 with optional $24 V \mathrm{DC}, 8.1 \mathrm{~N}-\mathrm{m}$ ($72 \mathrm{lb}-\mathrm{in}$.) brake, add 45 mm (1.75 in .) to AD, AG and C

[^3]: 1 If you are ordering a 1326AS-B3xxxx-21-K3 with an optional 24V DC $2.26 \mathrm{~N}-\mathrm{m}(20 \mathrm{lb}-\mathrm{in}$.) brake, add 39 mm (1.54 in .) to AD, AG and C.

[^4]: ${ }^{1}$ If you are ordering a 1326AS-B4xxxx-21-K4 with an optional 24 V DC $10.2 \mathrm{~N}-\mathrm{m}$ (90 lb -in.) brake, add 46 mm (1.81 in .) to AD, AG and C.
 Dimensions are per NEMA Standards MG 7-2.4.1.3 and IEC 72-1. Shaft and pilot tolerances are per DIN 42955, N tolerance.

[^5]: 1 If you are ordering a 1326AS-B8xxxx-21-K8 with an optional 24 V DC $50.9 \mathrm{~N}-\mathrm{m}$ (450lb-in.) brake, add 103 mm (4.05 in .) to AD, AG and C. Add 51 mm (2.0 in) to AL. Dimensions are per NEMA Standards MG 7-2.4.1.3 and IEC 72-1. Shaft and pilot tolerances are per DIN 42955, N tolerance. The eye bolt diameter is 38.1 mm (1.50 in) O.D. $\times 22.35 \mathrm{~mm}(0.88 \mathrm{in})$ I.D.

[^6]: ${ }^{1}$ All ratings are for $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ motor ambient, $110^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ case, $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ amplifier ambient and $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ extemal heatsink ambient (AM50 and AM 75$)$. For extended ratings at lower ambients contact Allen-Bradley.
 ${ }^{2}$ Limited by axis module continuous current.
 ${ }^{3}$ Limited by axis module peak current.

[^7]: Note: 8520-C (Series C) system modules include Smart Power, improved terminations, and EMI filtering
 Refer to 9/Series Integration and Maintenance Manual (publication 8520-6.2) for more information

